Message-Efficient Self-stabilizing Transformer Using Snap-Stabilizing Quiescence Detection

  • Anaïs DurandEmail author
  • Shay Kutten
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11085)


By presenting a message-efficient snap-stabilizing quiescence detection algorithm, we also facilitate a transformer that converts non self-stabilizing algorithms into self-stabilizing ones. We propose a message-efficient snap-stabilizing ongoing quiescence detection algorithm. (Notice that by definition it is also self-stabilizing and can detect termination.) This algorithm works for diffusing computations. We are not aware of any other self-stabilizing or snap-stabilizing ongoing quiescence or termination detection algorithm.


Fault-tolerance Snap-stabilization Quiescence Termination Diffusing computations 



This research was carried with a partial support of the Israel Ministry of Science and Technology.


  1. 1.
    Afek, Y., Brown, G.M.: Self-stabilization over unreliable communication media. Distrib. Comput. 7(1), 27–34 (1993)CrossRefGoogle Scholar
  2. 2.
    Afek, Y., Kutten, S., Yung, M.: The local detection paradigm and its application to self-stabilization. Theor. Comput. Sci. 186(1–2), 199–229 (1997)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Awerbuch, B., Kutten, S., Mansour, Y., Patt-Shamir, B., Varghese, G.: Time optimal self-stabilizing synchronization. In: STOC 1993, pp. 652–661 (1993)Google Scholar
  4. 4.
    Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-stabilization by local checking and correction (extended abstract). In: FOCS 1991, pp. 268–277 (1991)Google Scholar
  5. 5.
    Awerbuch, B., Patt-Shamir, B., Varghese, G., Dolev, S.: Self-stabilization by local checking and global reset. In: Tel, G., Vitányi, P. (eds.) WDAG 1994. LNCS, vol. 857, pp. 326–339. Springer, Heidelberg (1994). Scholar
  6. 6.
    Awerbuch, B., Varghese, G.: Distributed program checking: a paradigm for building self-stabilizing distributed protocols. In: FOCS 1991, pp. 258–267 (1991)Google Scholar
  7. 7.
    Boulinier, C., Petit, F., Villain, V.: When graph theory helps self-stabilization. PODC 2004, 150–159 (2004)zbMATHGoogle Scholar
  8. 8.
    Bui, A., Datta, A.K., Petit, F., Villain, V.: State-optimal snap-stabilizing PIF in tree networks. In: WSS 1999, pp. 78–85 (1999)Google Scholar
  9. 9.
    Chandy, K.M., Misra, J.: An example of stepwise refinement of distributed programs: quiescence detection. ACM TOPLAS 8(3), 326–343 (1986)CrossRefGoogle Scholar
  10. 10.
    Cournier, A., Datta, A.K., Devismes, S., Petit, F., Villain, V.: The expressive power of snap-stabilization. Theor. Comput. Sci. 626, 40–66 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17(11), 643–644 (1974)CrossRefGoogle Scholar
  12. 12.
    Dijkstra, E.W., Scholten, C.S.: Termination detection for diffusing computations. Inf. Process. Lett. 11(1), 1–4 (1980)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)zbMATHGoogle Scholar
  14. 14.
    Francez, N.: Distributed termination. ACM TOPLAS 2(1), 42–55 (1980)CrossRefGoogle Scholar
  15. 15.
    Francez, N., Rodeh, M., Sintzoff, M.: Distributed termination with interval assertions. In: Díaz, J., Ramos, I. (eds.) ICFPC 1981. LNCS, vol. 107, pp. 280–291. Springer, Heidelberg (1981). Scholar
  16. 16.
    Hendler, D., Kutten, S.: Bounded-wait combining: constructing robust and high-throughput shared objects. Distrib. Comput. 21(6), 405–431 (2009)CrossRefGoogle Scholar
  17. 17.
    Katz, S., Perry, K.J.: Self-stabilizing extensions for message-passing systems. Distrib. Comput. 7(1), 17–26 (1993)CrossRefGoogle Scholar
  18. 18.
    Korman, A., Kutten, S., Masuzawa, T.: Fast and compact self-stabilizing verification, computation, and fault detection of an MST. In: PODC 2011, pp. 311–320 (2011)Google Scholar
  19. 19.
    Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distrib. Comput. 22(4), 215–233 (2010)CrossRefGoogle Scholar
  20. 20.
    Peleg, D.: Distributed Computing: A Locality-sensitive Approach. Society for Industrial and Applied Mathematics (2000)Google Scholar
  21. 21.
    Shavit, N., Francez, N.: A new approach to detection of locally indicative stability. In: Kott, L. (ed.) ICALP 1986. LNCS, vol. 226, pp. 344–358. Springer, Heidelberg (1986). Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Technion - Israel Institute of TechnologyHaifaIsrael

Personalised recommendations