Advertisement

Balanced Allocations and Global Clock in Population Protocols: An Accurate Analysis

  • Yves Mocquard
  • Bruno Sericola
  • Emmanuelle AnceaumeEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11085)

Abstract

The context of this paper is the two-choice paradigm which is deeply used in balanced online resource allocation, priority scheduling, load balancing and more recently in population protocols. The model governing the evolution of these systems consists in throwing balls one by one and independently of each others into n bins, which represent the number of agents in the system. At each discrete instant, a ball is placed in the least filled bin among two bins randomly chosen among the n ones. A natural question is the evaluation of the difference between the number of balls in the most loaded bin and the one in the least loaded. At time t, this difference is denoted by \(\text {Gap}(t)\). A lot of work has been devoted to the derivation of asymptotic approximations of this gap for large values of n. In this paper we go a step further by showing that for all \(t \ge 0\), \(n \ge 2\) and \(\sigma > 0\), the variable \(\text {Gap}(t)\) is less than \(a(1+\sigma )\ln (n) + b\) with probability greater than \(1-1/n^\sigma \), where the constants a and b, which are independent of t, \(\sigma \) and n, are optimized and given explicitly, which to the best of our knowledge has never been done before.

References

  1. 1.
    Adler, M., Berenbrink, P., Schröder, K.: Analyzing an infinite parallel job allocation process. In: Bilardi, G., Italiano, G.F., Pietracaprina, A., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 417–428. Springer, Heidelberg (1998).  https://doi.org/10.1007/3-540-68530-8_35CrossRefGoogle Scholar
  2. 2.
    Adler, M., Chakrabarti, S., Mitzenmacher, M., Rasmussen, L.: Parallel randomized load balancing. Random Struct. Algorithms 13(2), 159–188 (1998)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Alistarh, D., Aspnes, J., Gelashvili, R.: Space-optimal majority in population protocols. In: Czumaj, A. (ed.) Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 2221–2239 (2018)CrossRefGoogle Scholar
  4. 4.
    Alistarh, D., Kopinsky, J., Li, J., Nadiradze, G.: The power of choice in priority scheduling. In: Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC) (2017)Google Scholar
  5. 5.
    Azar, Y., Broder, A.Z., Karlin, A.R., Upfal, E.: Balanced allocations (extended abstract). In: Proceedings of the ACM Symposium on Theory of Computing (STOC) (1994)Google Scholar
  6. 6.
    Berenbrink, P., Czumaj, A., Friedetzky, T., Vvedenskaya, N.D.: Infinite parallel job allocation (extended abstract). In: Proceedings of the ACM Symposium on Parallel Algorithms and Architectures (SPAA), pp. 99–108 (2000)Google Scholar
  7. 7.
    Berenbrink, P., Czumaj, A., Steger, A., Vöcking, B.: Balanced allocations: the heavily loaded case. SIAM J. Comput. 35(6), 1350–1385 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Berenbrink, P., Meyer auf der Heide, F., Schröder, K.: Allocating weighted jobs in parallel. Theory Comput. Syst. 32(3), 281–300 (1999)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Mitzenmacher, M.: Load balancing and density dependent jump Markov processes. In: Proceedings of International Conference on Foundations of Computer Science (1996)Google Scholar
  10. 10.
    Mitzenmacher, M., Richa, A.W., Sitaraman, R.: The power of two random choices: a survey of techniques and results. In: Handbook of Randomized Computing, pp. 255–312. Kluwer (2000)Google Scholar
  11. 11.
    Mocquard, Y., Sericola, B., Anceaume, E.: Balanced allocations and global clock in population protocols: An accurate analysis (Full version), Technical report (2018). https://hal.archives-ouvertes.fr/hal-01790973
  12. 12.
    Peres, Y., Talwar, K., Wieder, U.: The (1+\(\beta \))-choice process and weighted balls into bins. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA) (2010)Google Scholar
  13. 13.
    Peres, Y., Talwar, K., Wieder, U.: Graphical balanced allocations and the (1 + \(\beta \))-choice process. Random Struct. Algorithms 47(4), 760–775 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Raab, M., Steger, A.: “Balls into Bins” — a simple and tight analysis. In: Luby, M., Rolim, J.D.P., Serna, M. (eds.) RANDOM 1998. LNCS, vol. 1518, pp. 159–170. Springer, Heidelberg (1998).  https://doi.org/10.1007/3-540-49543-6_13CrossRefzbMATHGoogle Scholar
  15. 15.
    Talwar, K., Wieder, U.: Balanced allocations: a simple proof for the heavily loaded case. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 979–990. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-43948-7_81CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Yves Mocquard
    • 1
  • Bruno Sericola
    • 2
  • Emmanuelle Anceaume
    • 3
    Email author
  1. 1.Université de Rennes 1 - IRISARennesFrance
  2. 2.INRIA Rennes - Bretagne AtlantiqueRennesFrance
  3. 3.CNRS - IRISARennesFrance

Personalised recommendations