Time-Bounded Influence Diffusion with Incentives

  • Gennaro CordascoEmail author
  • Luisa Gargano
  • Joseph G. Peters
  • Adele A. Rescigno
  • Ugo Vaccaro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11085)


A widely studied model of influence diffusion in social networks represents the network as a graph \(G=(V,E)\) with an influence threshold t(v) for each node. Initially the members of an initial set \(S\subseteq V\) are influenced. During each subsequent round, the set of influenced nodes is augmented by including every node v that has at least t(v) previously influenced neighbours. The general problem is to find a small initial set that influences the whole network. In this paper we extend this model by using incentives to reduce the thresholds of some nodes. The goal is to minimize the total of the incentives required to ensure that the process completes within a given number of rounds. The problem is hard to approximate in general networks. We present polynomial-time algorithms for paths, trees, and complete networks.


  1. 1.
    Ackerman, E., Ben-Zwi, O., Wolfovitz, G.: Combinatorial model and bounds for target set selection. Theor. Comput. Sci. 411, 4017–4022 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ben-Zwi, O., Hermelin, D., Lokshtanov, D., Newman, I.: Treewidth governs the complexity of target set selection. Discret. Optim. 8, 87–96 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chopin, M., Nichterlein, A., Niedermeier, R., Weller, M.: Constant thresholds can make target set selection tractable. In: Even, G., Rawitz, D. (eds.) MedAlg 2012. LNCS, vol. 7659, pp. 120–133. Springer, Heidelberg (2012). Scholar
  4. 4.
    Coja-Oghlan, A., Feige, U., Krivelevich, M., Reichman, D.: Contagious sets in expanders. In: Proceedings of SODA 2015, pp. 1953–1987 (2015)Google Scholar
  5. 5.
    Chen, W., Lakshmanan, L.V.S., Castillo, C.: Information and Influence Propagation in Social Networks. Morgan & Claypool, San Rafael (2013)Google Scholar
  6. 6.
    Chen, N.: On the approximability of influence in social networks. SIAM J. Discrete Math. 23, 1400–1415 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chiang, C.-Y., Huang, L.-H., Li, B.-J., Wu, J., Yeh, H.-G.: Some results on the target set selection problem. Journal of Comb. Opt. 25(4), 702–715 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cicalese, F., Cordasco, G., Gargano, L., Milanič, M., Peters, J., Vaccaro, U.: Spread of influence in weighted networks under time and budget constraints. Theor. Comput. Sci. 586, 40–58 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Cicalese, F., Cordasco, G., Gargano, L., Milanič, M., Vaccaro, U.: Latency-Bounded target set selection in social networks. Theor. Comput. Sci. 535, 1–15 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Cordasco, G., Gargano, L., Rescigno, A.A.: On finding small sets that influence large networks. Soc. Netw. Anal. Min. 6(94) (2016)Google Scholar
  11. 11.
    Cordasco, G., Gargano, L., Rescigno, A.A., Vaccaro, U.: Optimizing spread of influence in social networks via partial incentives. In: Scheideler, C. (ed.) Structural Information and Communication Complexity. LNCS, vol. 9439, pp. 119–134. Springer, Cham (2015). Scholar
  12. 12.
    Demaine, E.D., et al.: How to influence people with partial incentives. In: Proceedings of WWW 2014, pp. 937–948 (2014)Google Scholar
  13. 13.
    Domingos, P., Richardson, M.: Mining the network value of customers. In: Proceedings of 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 57–66 (2001)Google Scholar
  14. 14.
    Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  15. 15.
    Gargano, L., Hell, P., Peters, J.G., Vaccaro, U.: Influence diffusion in social networks under time window constraints. Theor. Comput. Sci. 584, 53–66 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Granovetter, M.: Thresholds models of collective behaviors. Am. J. Sociol. 83(6), 1420–1443 (1978)CrossRefGoogle Scholar
  17. 17.
    Kempe, D., Kleinberg, J.M., Tardos, E.: Maximizing the spread of influence through a social network. In: Proceedings of 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146 (2003)Google Scholar
  18. 18.
    Lafond, M., Narayanan, L., Wu, K.: Whom to befriend to influence people. In: Suomela, J. (ed.) SIROCCO 2016. LNCS, vol. 9988, pp. 340–357. Springer, Cham (2016). Scholar
  19. 19.
    Narayanan, L., Wu, K.: How to choose friends strategically. In: Das, S., Tixeuil, S. (eds.) SIROCCO 2017. LNCS, vol. 10641, pp. 283–302. Springer, Cham (2017). Scholar
  20. 20.
    Nichterlein, A., Niedermeier, R., Uhlmann, J., Weller, M.: On tractable cases of target set selection. Soc. Netw. Anal. Min. 3(2), 233–256 (2013)CrossRefGoogle Scholar
  21. 21.
    Peleg, D.: Local majorities, coalitions and monopolies in graphs: a review. Theor. Comput. Sci. 282, 231–257 (2002)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Reddy, T.V.T., Rangan, C.P.: Variants of spreading messages. J. Graph Algorithms Appl. 15(5), 683–699 (2011)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Liu, X., Yang, Z., Wang, W.: Exact solutions for latency-bounded target set selection problem on some special families of graphs. Discret. Appl. Math. 203(C), 111–116 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Gennaro Cordasco
    • 1
    Email author
  • Luisa Gargano
    • 2
  • Joseph G. Peters
    • 3
  • Adele A. Rescigno
    • 2
  • Ugo Vaccaro
    • 2
  1. 1.Department of PsychologyUniversità della Campania “Luigi Vanvitelli”CasertaItaly
  2. 2.Department of Computer ScienceUniversità di SalernoFiscianoItaly
  3. 3.School of Computing ScienceSimon Fraser UniversityBurnabyCanada

Personalised recommendations