Advertisement

Online Service with Delay on a Line

  • Marcin BienkowskiEmail author
  • Artur Kraska
  • Paweł Schmidt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11085)

Abstract

In the Online Service with Delay (OSD) problem, introduced recently by Azar et al. (STOC 2017), there are an n-point metric space and a server occupying some point. Points request service over time and these requests need to be eventually served by moving the server to these points. To exploit spatial locality of requests, a service may be delayed and requests may be served in batches. However, there are certain penalties associated with the delays, e.g., such penalty may be proportional to the waiting time of a given request. The goal is to minimize the sum of the total distance traveled by the server and all delay penalties. The OSD problem is closely related to widely studied optimization problems, such as the reordering buffer management and the multi-level aggregation. Azar et al. (STOC 2017) gave a randomized online \(O(\log ^4 n)\)-competitive algorithm for general metric spaces. In this paper, we present a deterministic \(O(\log n)\)-competitive algorithm for the case when the metric space is a line consisting of n equidistant points.

Keywords

Delayed service Server problems Online algorithms Competitive analysis 

References

  1. 1.
    Aboud, A.: Correlation clustering with penalties and approximating the reordering buffer management problem. Master’s thesis, Computer Science Department, The Technion Israel Institute of Technology (2008)Google Scholar
  2. 2.
    Adamaszek, A., Czumaj, A., Englert, M., Räcke, H.: Almost tight bounds for reordering buffer management. In: Proceedings 43rd ACM Symposium on Theory of Computing (STOC), pp. 607–616 (2011)Google Scholar
  3. 3.
    Avigdor-Elgrabli, N., Im, S., Moseley, B., Rabani, Y.: On the randomized competitive ratio of reordering buffer management with non-uniform costs. In: Proceedings 42nd International Colloquium on Automata, Languages and Programming (ICALP), pp. 78–90 (2015)CrossRefGoogle Scholar
  4. 4.
    Avigdor-Elgrabli, N., Rabani, Y.: An improved competitive algorithm for reordering buffer management. In: Proceedings 21st ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 13–21 (2010)CrossRefGoogle Scholar
  5. 5.
    Avigdor-Elgrabli, N., Rabani, Y.: An optimal randomized online algorithm for reordering buffer management. In: Proceedings 54th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 1–10 (2013)Google Scholar
  6. 6.
    Azar, Y., Ganesh, A., Ge, R., Panigrahi, D.: Online service with delay. In: Proceedings 49th ACM Symposium on Theory of Computing (STOC), pp. 551–563 (2017)Google Scholar
  7. 7.
    Bansal, N., Buchbinder, N., Mądry, A., Naor, J.: A polylogarithmic-competitive algorithm for the k-server problem. J. ACM 62(5), 40:1–40:49 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bienkowski, M., et al.: Online algorithms for multi-level aggregation. In: Proceedings 24th European Symposium on Algorithms (ESA), pp. 12:1–12:17 (2016)Google Scholar
  9. 9.
    Bienkowski, M., et al.: Logarithmic price of buffer downscaling on line metrics. Theor. Comput. Sci. 707, 89–93 (2018)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bienkowski, M., Byrka, J., Chrobak, M., Jeż, L., Nogneng, D., Sgall, J.: Better approximation bounds for the joint replenishment problem. In: Proceedings 25th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 42–54 (2014)Google Scholar
  11. 11.
    Bienkowski, M., Byrka, J., Chrobak, M., Jeż, Ł., Sgall, J., Stachowiak, G.: Online control message aggregation in chain networks. In: Proceedings 13th International Workshop on Algorithms and Data Structures (WADS), pp. 133–145 (2013)zbMATHGoogle Scholar
  12. 12.
    Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, New York (1998)zbMATHGoogle Scholar
  13. 13.
    Brito, C., Koutsoupias, E., Vaya, S.: Competitive analysis of organization networks or multicast acknowledgement: how much to wait? Algorithmica 64(4), 584–605 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Buchbinder, N., Feldman, M., Naor, J.S., Talmon, O.: O(depth)-competitive algorithm for online multi-level aggregation. In: Proceedings 28th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1235–1244 (2017)Google Scholar
  15. 15.
    Buchbinder, N., Kimbrel, T., Levi, R., Makarychev, K., Sviridenko, M.: Online make-to-order joint replenishment model: primal dual competitive algorithms. In: Proceedings 19th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 952–961 (2008)Google Scholar
  16. 16.
    Englert, M., Räcke, H.: Reordering buffers with logarithmic diameter dependency for trees. In: Proceedings 28th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1224–1234 (2017)Google Scholar
  17. 17.
    Englert, M., Räcke, H., Westermann, M.: Reordering buffers for general metric spaces. Theory Comput. Syst. 6(1), 27–46 (2010)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Englert, M., Westermann, M.: Reordering buffer management for non-uniform cost models. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 627–638. Springer, Heidelberg (2005).  https://doi.org/10.1007/11523468_51CrossRefGoogle Scholar
  19. 19.
    Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary metrics by tree metrics. J. Comput. Syst. Sci. 69(3), 485–497 (2004)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Gamzu, I., Segev, D.: Improved online algorithms for the sorting buffer problem on line metrics. ACM Trans. Algorithms 6(1), 15:1–15:14 (2009)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Khandekar, R., Pandit, V.: Online and offline algorithms for the sorting buffers problem on the line metric. J. Discret. Algorithms 8(1), 24–35 (2010)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Räcke, H., Sohler, C., Westermann, M.: Online scheduling for sorting buffers. In: Möhring, R., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 820–832. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45749-6_71CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Computer ScienceUniversity of WrocławWrocławPoland

Personalised recommendations