A Deterministic Distributed 2-Approximation for Weighted Vertex Cover in \(O(\log N\log \varDelta /\log ^2\log \varDelta )\) Rounds

  • Ran Ben-BasatEmail author
  • Guy Even
  • Ken-ichi Kawarabayashi
  • Gregory Schwartzman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11085)


We present a deterministic distributed 2-approximation algorithm for the Minimum Weight Vertex Cover problem in the CONGEST model whose round complexity is \(O(\log n\log \varDelta / \log ^2\log \varDelta )\). This improves over the currently best known deterministic 2-approximation implied by [KVY94]. Our solution generalizes the \((2+\epsilon )\)-approximation algorithm of [BCS17], improving the dependency on \(\epsilon ^{-1}\) from linear to logarithmic. In addition, for every \(\epsilon =(\log \varDelta )^{-c}\), where \(c\ge 1\) is a constant, our algorithm computes a \(\left( 2+\epsilon \right) \)-approximation in \(O(\log {\varDelta }/\log \log {\varDelta })\) rounds (which is asymptotically optimal).


  1. [ÅFP+09]
    Åstrand, M., Floréen, P., Polishchuk, V., Rybicki, J., Suomela, J., Uitto, J.: A local 2-approximation algorithm for the vertex cover problem. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 191–205. Springer, Heidelberg (2009). Scholar
  2. [ÅS10]
    Åstrand, M., Suomela, J.: Fast distributed approximation algorithms for vertex cover and set cover in anonymous networks. In: SPAA 2010 Proceedings of the 22nd Annual ACM Symposium on Parallelism in Algorithms and Architectures, Thira, Santorini, Greece, pp. 294–302, 13–15 June 2010Google Scholar
  3. [BCS17]
    Bar-Yehuda, R., Censor-Hillel, K., Schwartzman, G.: A distributed (2 + \(\epsilon \))-approximation for vertex cover in o(log \(\Delta \) / \(\epsilon \) log log \(\Delta \)) rounds. J. ACM 64(3), 23:1–23:11 (2017)Google Scholar
  4. [BE81]
    Bar-Yehuda, R., Even, S.: A linear-time approximation algorithm for the weighted vertex cover problem. J. Algorithms 2(2), 198–203 (1981)MathSciNetCrossRefGoogle Scholar
  5. [BE85]
    Bar-Yehuda, R., Even, S.: A local-ratio theorem for approximating the weighted vertex cover problem. N.-Holland Math. Stud. 109, 27–45 (1985)MathSciNetCrossRefGoogle Scholar
  6. [BEPS12]
    Barenboim, L., Elkin, M., Pettie, S., Schneider, J.: The locality of distributed symmetry breaking. In: 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA, pp. 321–330, 20–23 October 2012Google Scholar
  7. [CLRS09]
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd Edition. The MIT Press, Cambridge (2009)Google Scholar
  8. [GJ79]
    Garey, M.R., Johnson, D.S., Freeman, W.H.: Computers and Intractability: A Guide to the Theory of NP-Completeness (1979)Google Scholar
  9. [GKP08]
    Grandoni, F., Könemann, J., Panconesi, A.: Distributed weighted vertex cover via maximal matchings. ACM Trans. Algorithms 5(1) (2008)MathSciNetCrossRefGoogle Scholar
  10. [HKP01]
    Hanckowiak, M., Karonski, M., Panconesi, A.: On the distributed complexity of computing maximal matchings. SIAM J. Discrete Math. 15(1), 41–57 (2001)MathSciNetCrossRefGoogle Scholar
  11. [Hoc82]
    Hochbaum, D.S.: Approximation algorithms for the set covering and vertex cover problems. SIAM J. Comput. 11(3), 555–556 (1982)MathSciNetCrossRefGoogle Scholar
  12. [Kar72]
    Karp, T.M.: Reducibility among combinatorial problems. In: Proceedings of a Symposium on the Complexity of Computer Computations. The IBM Thomas J. Watson Research Center, Yorktown Heights. Springer, New York, pp. 85–103, 20–22 March 1972. Scholar
  13. [KMW06]
    Kuhn, F., Moscibroda, T., Wattenhofer, R.: The price of being near-sighted. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2006, Miami, Florida, USA, pp. 980–989, 22–26 January 2006Google Scholar
  14. [KMW16]
    Kuhn, F., Moscibroda, T., Wattenhofer, R.: Local computation: lower and upper bounds. J. ACM 63(2), 17:1–17:44 (2016)CrossRefGoogle Scholar
  15. [KR08]
    Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2-epsilon. J. Comput. Syst. Sci. 74(3), 335–349 (2008)CrossRefGoogle Scholar
  16. [KVY94]
    Khuller, S., Vishkin, U., Young, N.E.: A primal-dual parallel approximation technique applied to weighted set and vertex covers. J. Algorithms 17(2), 280–289 (1994)MathSciNetCrossRefGoogle Scholar
  17. [KY09]
    Koufogiannakis, C., Young, N.E.: Distributed and parallel algorithms for weighted vertex cover and other covering problems. In: Proceedings of the 28th ACM Symposium on Principles of Distributed Computing, PODC 2009, pp. 171–179. ACM, New York (2009)Google Scholar
  18. [KY11]
    Koufogiannakis, C., Young, N.E.: Distributed algorithms for covering, packing and maximum weighted matching. Distrib. Comput. 24(1), 45–63 (2011)CrossRefGoogle Scholar
  19. [NJ75]
    Nemhauser, G.L., Trotter Jr., L.E.: Vertex packings: structural properties and algorithms. Math. Program. 8(1), 232–248 (1975)MathSciNetCrossRefGoogle Scholar
  20. [Pet16]
    Pettie, S.: Personal communication (2016)Google Scholar
  21. [PR01]
    Panconesi, A., Rizzi, R.: Some simple distributed algorithms for sparse networks. Distrib. Comput. 14(2), 97–100 (2001)CrossRefGoogle Scholar
  22. [PS09]
    Polishchuk, V., Suomela, J.: A simple local 3-approximation algorithm for vertex cover. Inf. Process. Lett. 109(12), 642–645 (2009)MathSciNetCrossRefGoogle Scholar
  23. [Sol18]
    Solomon, S.: Local algorithms for bounded degree sparsifiers in sparse graphs. In: ITCS, volume 94 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, pp. 52:1–52:19 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Ran Ben-Basat
    • 1
    Email author
  • Guy Even
    • 2
  • Ken-ichi Kawarabayashi
    • 3
  • Gregory Schwartzman
    • 3
  1. 1.Department of Computer ScienceTechnionHaifaIsrael
  2. 2.School of Electrical EngineeringTel Aviv UniversityTel AvivIsrael
  3. 3.NIITokyoJapan

Personalised recommendations