Two Rounds Are Enough for Reconstructing Any Graph (Class) in the Congested Clique Model

  • Pedro MontealegreEmail author
  • Sebastian Perez-Salazar
  • Ivan Rapaport
  • Ioan Todinca
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11085)


In this paper we study the reconstruction problem in the congested clique model. In the reconstruction problem nodes are asked to recover all the edges of the input graph G. Formally, given a class of graphs \(\mathcal G\), the problem is defined as follows: if \(G \notin {\mathcal G}\), then every node must reject; on the other hand, if \(G \in {\mathcal G}\), then every node must end up knowing all the edges of G. It is not difficult to see that the cost Rb of any algorithm that solves this problem (even with public coins) is at least \(\varOmega (\log |{\mathcal {G}}_n|/n)\), where \({\mathcal {G}}_n\) is the subclass of all n-node labeled graphs in \(\mathcal G\), R is the number of rounds and b is the bandwidth.

We prove here that the lower bound above is in fact tight and that it is possible to achieve it with only \(R=2\) rounds and private coins. More precisely, we exhibit (i) a one-round algorithm that achieves this bound for hereditary graph classes; and (ii) a two-round algorithm that achieves this bound for arbitrary graph classes. Later, we show that the bound \(\varOmega (\log |{\mathcal {G}}_n|/n)\) cannot be achieved in one round for arbitrary graph classes, and we give tight algorithms for that case.

From (i) we recover all known results concerning the reconstruction of graph classes in one round and bandwidth \(\mathcal {O}(\log n)\): forests, planar graphs, cographs, etc. But we also get new one-round algorithms for other hereditary graph classes such as unit-disc graphs, interval graphs, etc. From (ii), we can conclude that any problem restricted to a class of graphs of size \(2^{\mathcal {O}(n\log n)}\) can be solved in the congested clique model in two rounds, with bandwidth \(\mathcal {O}(\log n)\). Moreover, our general two-round algorithm is valid for any set of labeled graphs, not only for graph classes.


Congested clique Round complexity Reconstruction problem Graph classes Hereditary graphs 


  1. 1.
    Beame, P., Koutris, P., Suciu, D.: Communication steps for parallel query processing. J. ACM 64(6), Article 40 (2017)Google Scholar
  2. 2.
    Becker, F., Matamala, M., Nisse, N., Rapaport, I., Suchan, K., Todinca, I: Adding a referee to an interconnection network: what can(not) be computed in one round. In: IPDPS 2011, pp. 508–514 (2011)Google Scholar
  3. 3.
    Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM, Philadelphia (1999)CrossRefGoogle Scholar
  4. 4.
    Censor-Hillel, K., Kaski, P., Korhonen, J. H., Lenzen, C., Paz, A., Suomela, J.: Algebraic methods in the congested clique. In: PODC 2015, pp. 143–152 (2015)Google Scholar
  5. 5.
    Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)CrossRefGoogle Scholar
  6. 6.
    Drucker, A., Kuhn, F., Oshman, R.: On the power of the congested clique model. In: PODC 2014, pp. 367–376 (2014)Google Scholar
  7. 7.
    Garey, M.R., Johnson, D.S.: Computers and Intractability. W H Freeman, New York (2002)Google Scholar
  8. 8.
    Ghaffari, M.: An improved distributed algorithm for maximal independent set. In: SODA 2016, pp. 270–277 (2016)Google Scholar
  9. 9.
    Ghaffari, M., Parter, M.: MST in log-star rounds of congested clique. In: PODC 2016, pp. 19–28 (2016)Google Scholar
  10. 10.
    Ghaffari, M.: Distributed MIS via all-to-all communication. In: PODC 2017, pp. 141–149 (2017)Google Scholar
  11. 11.
    Hegeman, J.W., Pandurangan, G., Pemmaraju, S.V., Sardeshmukh, V., Scquizzato, M.: Toward optimal bounds in the congested clique: graph connectivity and MST. In: PODC 2015, pp. 91–100 (2015)Google Scholar
  12. 12.
    Hegeman, J.W., Pemmaraju, S.V.: Lessons from the congested clique applied to MapReduce. In: SIROCCO 2014, pp. 149–164 (2014)Google Scholar
  13. 13.
    Hegeman, J.W., Pemmaraju, S.V., Sardeshmukh, V.B.: Near-constant-time distributed algorithms on a congested clique. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 514–530. Springer, Heidelberg (2014). Scholar
  14. 14.
    Jurdzinski, T., Nowicki, K.: MST in O(1) rounds of the congested clique. In: SODA 2018, pp. 2620–2632 (2018)Google Scholar
  15. 15.
    Kari, J., Matamala, M., Rapaport, I., Salo, V.: Solving the induced subgraph problem in the randomized multiparty simultaneous messages model. In: Scheideler, C. (ed.) SIROCCO 2015. LNCS, vol. 9439, pp. 370–384. Springer, Cham (2015). Scholar
  16. 16.
    Karloff, H., Suri, S., Vassilvitskii, S.: A model of computation for MapReduce. In: SODA 2010, pp. 938–948 (2010)CrossRefGoogle Scholar
  17. 17.
    Klauck, H., Nanongkai, D., Pandurangan, G., Robinson, P.: Distributed computation of large-scale graph problems. In: SODA 2015, pp. 391–410 (2015)Google Scholar
  18. 18.
    Lenzen, C.: Optimal deterministic routing and sorting on the congested clique. In: PODC 2013, pp. 42–50 (2013)Google Scholar
  19. 19.
    Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications. Cambridge University Press, Cambridge (1994)CrossRefGoogle Scholar
  20. 20.
    Lotker, Z., Patt-Shamir, B., Pavlov, E., Peleg, D.: Minimum-weight spanning tree construction in O (\(\log \log n\)) communication rounds. SIAM J. Comput. 35(1), 120–131 (2005)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Malewicz, G., et al.: Pregel: a system for large-scale graph processing. In: SIGMOD 2010, pp. 135–146 (2010)Google Scholar
  22. 22.
    Montealegre, P., Todinca, I.: Brief announcement: deterministic graph connectivity in the broadcast congested clique. In: PODC 2016, pp. 245–247 (2016)Google Scholar
  23. 23.
    Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. J. Soc. Ind. Appl. Math. 8(2), 300–304 (1960)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Scheinerman, E.R., Zito, J.: On the size of hereditary classes of graphs. J. Comb. Theory, Ser. B 61(1), 16–39 (1994)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. J. ACM 27(4), 701–717 (1980)MathSciNetCrossRefGoogle Scholar
  26. 26.
    White, T.: Hadoop: The definitive guide. O’Reilly Media Inc., Sebastopol (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Pedro Montealegre
    • 1
    Email author
  • Sebastian Perez-Salazar
    • 2
  • Ivan Rapaport
    • 3
  • Ioan Todinca
    • 4
  1. 1.Facultad de Ingeniería y CienciasUniversidad Adolfo IbáñezSantiagoChile
  2. 2.ISyE, Georgia Institute of TechnologyAtlantaUSA
  3. 3.DIM-CMM (UMI 2807 CNRS), Universidad de ChileSantiagoChile
  4. 4.Université d’Orléans, INSA Centre Val de Loire, LIFO EA 4022OrléansFrance

Personalised recommendations