Advertisement

On the Strongest Message Adversary for Consensus in Directed Dynamic Networks

  • Ulrich Schmid
  • Manfred SchwarzEmail author
  • Kyrill Winkler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11085)

Abstract

Inspired by the successful chase for the weakest failure detector in asynchronous message passing systems with crash failures and surprising relations to synchronous directed dynamic networks with message adversaries established by Raynal and Stainer [PODC’13], we introduce the concept of message adversary simulations and use it for defining a notion for strongest message adversary for solving distributed computing problems like consensus and k-set agreement. We prove that every message adversary that admits all graph sequences consisting of perpetual star graphs and is strong enough for solving multi-valued consensus is a strongest one. We elaborate on seemingly paradoxical consequences of our results, which also shed some light on the fundamental difference between crash-prone asynchronous systems with failure detectors and synchronous dynamic networks with message adversaries.

Keywords

Dynamic networks Strongest message adversary Failure detectors Consensus 

Notes

Acknowledgments

This work has been supported by the Austrian Science Fund FWF under the projects ADynNet (P28182) and RiSE/SHiNE (S11405).

References

  1. 1.
    Afek, Y., Gafni, E.: Asynchrony from synchrony. In: Frey, D., Raynal, M., Sarkar, S., Shyamasundar, R.K., Sinha, P. (eds.) ICDCN 2013. LNCS, vol. 7730, pp. 225–239. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-35668-1_16CrossRefGoogle Scholar
  2. 2.
    Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: On implementing Omega with weak reliability and synchrony assumptions. In: Proceeding of the 22nd Annual ACM Symposium on Principles of Distributed Computing (PODC 2003), pp. 306–314. ACM Press, New York (2003)Google Scholar
  3. 3.
    Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Stable leader election. In: Welch, J. (ed.) DISC 2001. LNCS, vol. 2180, pp. 108–122. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45414-4_8CrossRefGoogle Scholar
  4. 4.
    Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Communication-efficient leader election and consensus with limited link synchrony. In: PODC 2004, pp. 328–337. ACM Press, St. John’s, Newfoundland (2004)Google Scholar
  5. 5.
    Anceaume, E., Fernández, A., Mostéfaoui, A., Neiger, G., Raynal, M.: A necessary and sufficient condition for transforming limited accuracy failure detectors. J. Comp. Sys. Sci. 68(1), 123–133 (2004)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Biely, M., Hutle, M., Penso, L.D., Widder, J.: Relating stabilizing timing assumptions to stabilizing failure detectors regarding solvability and efficiency. In: Masuzawa, T., Tixeuil, S. (eds.) SSS 2007. LNCS, vol. 4838, pp. 4–20. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-76627-8_4CrossRefGoogle Scholar
  7. 7.
    Biely, M., Robinson, P., Schmid, U.: Agreement in directed dynamic networks. In: Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 73–84. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31104-8_7CrossRefGoogle Scholar
  8. 8.
    Biely, M., Robinson, P., Schmid, U., Schwarz, M., Winkler, K.: Gracefully degrading consensus and k-set agreement in directed dynamic networks. In: Bouajjani, A., Fauconnier, H. (eds.) NETYS 2015. LNCS, vol. 9466, pp. 109–124. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-26850-7_8CrossRefGoogle Scholar
  9. 9.
    Biely, M., Robinson, P., Schmid, U., Schwarz, M., Winkler, K.: Gracefully degrading consensus and k-set agreement in directed dynamic networks. Theor. Comput. Sci. 726, 41–77 (2018).  https://doi.org/10.1016/j.tcs.2018.02.019. http://www.sciencedirect.com/science/article/pii/S0304397518301166MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Biely, M., Schmid, U., Weiss, B.: Synchronous consensus under hybrid process and link failures. Theor. Comput. Sci. 412(40), 5602–5630 (2011).  https://doi.org/10.1016/j.tcs.2010.09.032. http://www.sciencedirect.com/science/article/pii/S0304397510005359MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bonnet, F., Raynal, M.: On the road to the weakest failure detector for k-set agreement in message-passing systems. Theor. Comput. Sci. 412(33), 4273–4284 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed systems. J. ACM 43(2), 225–267 (1996). http://www.cs.cornell.edu/home/sam/FDpapers/CT96-JACM.psMathSciNetCrossRefGoogle Scholar
  13. 13.
    Charron-Bost, B., Függer, M., Nowak, T.: Approximate consensus in highly dynamic networks: the role of averaging algorithms. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 528–539. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-47666-6_42CrossRefGoogle Scholar
  14. 14.
    Charron-Bost, B., Hutle, M., Widder, J.: In search of lost time. Inf. Process. Lett. 110(21), 928–933 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Charron-Bost, B., Schiper, A.: The Heard-Of model: computing in distributed systems with benign faults. Distrib. Comput. 22(1), 49–71 (2009)CrossRefGoogle Scholar
  16. 16.
    Coulouma, É., Godard, E., Peters, J.G.: A characterization of oblivious message adversaries for which consensus is solvable. Theor. Comput. Sci. 584, 80–90 (2015). http://dx.doi.org/10.1016/j.tcs.2015.01.024MathSciNetCrossRefGoogle Scholar
  17. 17.
    Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Hadzilacos, V., Kouznetsov, P., Toueg, S.: The weakest failure detectors to solve certain fundamental problems in distributed computing. In: PODC 2004, pp. 338–346. ACM Press (2004)Google Scholar
  18. 18.
    Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial synchrony. J. ACM 35(2), 288–323 (1988)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Fernández, A., Raynal, M.: From an asynchronous intermittent rotating star to an eventual leader. IEEE Trans. Parallel Distrib. Syst. 21(9), 1290–1303 (2010)CrossRefGoogle Scholar
  20. 20.
    Gafni, E.: Round-by-round fault detectors (extended abstract): unifying synchrony and asynchrony. In: Proceedings of the Seventeenth Annual ACM Symposium on Principles of Distributed Computing. pp. 143–152. ACM Press, Puerto Vallarta (1998)Google Scholar
  21. 21.
    Hutle, M., Malkhi, D., Schmid, U., Zhou, L.: Chasing the weakest system model for implementing omega and consensus. IEEE Trans. Dependable Secur. Comput. 6(4), 269–281 (2009). http://www.vmars.tuwien.ac.at/documents/extern/1803/paper.pdfCrossRefGoogle Scholar
  22. 22.
    Jayanti, P., Toueg, S.: Every problem has a weakest failure detector. In: PODC 2008, pp. 75–84. ACM, New York (2008)Google Scholar
  23. 23.
    Keidar, I., Shraer, A.: Timeliness, failure detectors, and consensus performance. In: PODC 2006, pp. 169–178. ACM Press, New York (2006)Google Scholar
  24. 24.
    Kuhn, F., Oshman, R.: Dynamic networks: models and algorithms. SIGACT News 42(1), 82–96 (2011)CrossRefGoogle Scholar
  25. 25.
    Kuhn, F., Oshman, R., Moses, Y.: Coordinated consensus in dynamic networks. In: PODC 2011, ACM (2011)Google Scholar
  26. 26.
    Malkhi, D., Oprea, F., Zhou, L.: \(\varOmega \) Meets Paxos: leader election and stability without eventual timely links. In: Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 199–213. Springer, Heidelberg (2005).  https://doi.org/10.1007/11561927_16CrossRefGoogle Scholar
  27. 27.
    Mostéfaoui, A., Raynal, M.: Solving consensus using chandra-toueg’s unreliable failure detectors: a general quorum-based approach. In: Jayanti, P. (ed.) DISC 1999. LNCS, vol. 1693, pp. 49–63. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48169-9_4CrossRefGoogle Scholar
  28. 28.
    Rajsbaum, S., Raynal, M., Travers, C.: An impossibility about failure detectors in the iterated immediate snapshot model. Inf. Process. Lett. 108(3), 160–164 (2008).  https://doi.org/10.1016/j.ipl.2008.05.001MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Raynal, M., Stainer, J.: Synchrony weakened by message adversaries vs asynchrony restricted by failure detectors. In: PODC 2013, pp. 166–175 (2013)Google Scholar
  30. 30.
    Santoro, N., Widmayer, P.: Time is not a healer. In: Monien, B., Cori, R. (eds.) STACS 1989. LNCS, vol. 349, pp. 304–313. Springer, Heidelberg (1989).  https://doi.org/10.1007/BFb0028994CrossRefGoogle Scholar
  31. 31.
    Schmid, U., Weiss, B., Keidar, I.: Impossibility results and lower bounds for consensus under link failures. SIAM J. Comput. 38(5), 1912–1951 (2009). http://www.vmars.tuwien.ac.at/documents/extern/2554/paper.pdfMathSciNetCrossRefGoogle Scholar
  32. 32.
    Schwarz, M., Winkler, K., Schmid, U.: Fast consensus under eventually stabilizing message adversaries. In: ICDCN 2016, pp. 7:1–7:10. ACM, New York (2016). http://doi.acm.org/10.1145/2833312.2833323
  33. 33.
    Winkler, K., Schwarz, M., Schmid, U.: Consensus in directed dynamic networks with short-lived stability. CoRR abs/1602.05852 (2016). http://arxiv.org/abs/1602.05852

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Ulrich Schmid
    • 1
  • Manfred Schwarz
    • 1
    Email author
  • Kyrill Winkler
    • 1
  1. 1.Embedded Computing Systems Group, TU WienViennaAustria

Personalised recommendations