Simple and Local Independent Set Approximation

  • Ravi B. Boppana
  • Magnús M. Halldórsson
  • Dror RawitzEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11085)


We bound the performance guarantees that follow from Turán-like bounds for unweighted and weighted independent sets in bounded-degree graphs. In particular, a randomized approach of Boppana forms a simple 1-round distributed algorithm, as well as a streaming and preemptive online algorithm. We show it gives a tight \((\varDelta +1)/2\)-approximation in unweighted graphs of maximum degree \(\varDelta \), which is best possible for 1-round distributed algorithms. For weighted graphs, it gives only a \((\varDelta +1)\)-approximation, but a simple modification results in an asymptotic expected \(0.529 (\varDelta +1)\)-approximation. This compares with a recent, more complex \(\varDelta \)-approximation [6], which holds deterministically.


  1. 1.
    Alon, N.: On constant time approximation of parameters of bounded degree graphs. In: Goldreich, O. (ed.) Property Testing - Current Research and Surveys. LNCS, vol. 6390, pp. 234–239. Springer, Heidelberg (2010). Scholar
  2. 2.
    Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm for the maximal independent set problem. J. Algorithms 7(4), 567–583 (1986)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Alon, N., Spencer, J.H.: The Probabilistic Method, 4th edn. Wiley, Hoboken (2016)zbMATHGoogle Scholar
  4. 4.
    Austrin, P., Khot, S., Safra, M.: Inapproximability of vertex cover and independent set in bounded degree graphs. In: 24th IEEE CCC, pp. 74–80 (2009)Google Scholar
  5. 5.
    Bansal, N., Gupta, A., Guruganesh, G.: On the Lovász theta function for independent sets in sparse graphs. In: 47th ACM STOC, pp. 193–200 (2015)Google Scholar
  6. 6.
    Bar-Yehuda, R., Censor-Hillel, K., Ghaffari, M., Schwartzman, G.: Distributed approximation of maximum independent set and maximum matching. In: PODC, pp. 165–174 (2017)Google Scholar
  7. 7.
    Berman, P., Fujito, T.: On approximation properties of the independent set problem for low degree graphs. Theor. Comput. Syst. 32(2), 115–132 (1999)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bodlaender, M.H., Halldórsson, M.M., Konrad, C., Kuhn, F.: Brief announcement: local independent set approximation. In: PODC, pp. 377–378. ACM (2016)Google Scholar
  9. 9.
    Boppana, R.B.: Personal communication to Joel Spencer (1987)Google Scholar
  10. 10.
    Caro, Y.: New results on the independence number. Technical report, Tel Aviv Univ. (1979)Google Scholar
  11. 11.
    Censor-Hillel, K., Khoury, S., Paz, A.: Quadratic and near-quadratic lower bounds for the CONGEST model. In: 31st International Symposium on Distributed Computing, pp. 10:1–10:16 (2017)Google Scholar
  12. 12.
    Chan, S.O.: Approximation resistance from pairwise-independent subgroups. J. ACM 63(3), 27 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Chvátal, V., McDiarmid, C.: Small transversals in hypergraphs. Combinatorica 12(1), 19–26 (1992)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Cormode, G., Dark, J., Konrad, C.: Independent set size approximation in graph streams. Technical report arXiv:1702.08299, CoRR (2017)
  15. 15.
    Emek, Y., Halldórsson, M.M., Mansour, Y., Patt-Shamir, B., Radhakrishnan, J., Rawitz, D.: Online set packing. SIAM J. Comput. 41(4), 728–746 (2012)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Erdős, P.: On the graph theorem of Turán. Mat. Lapok 21, 249–251 (1970). (in Hungarian)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Ghaffari, M., Kuhn, F., Maus, Y.: On the complexity of local distributed graph problems. In: 49th Annual ACM SIGACT Symposium on Theory of Computing, pp. 784–797 (2017)Google Scholar
  18. 18.
    Griggs, J.R.: Lower bounds on the independence number in terms of the degrees. J. Combin. Theor. B 34, 22–39 (1983)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Halldórsson, B.V., Halldórsson, M.M., Losievskaja, E., Szegedy, M.: Streaming algorithms for independent sets in sparse hypergraphs. Algorithmica 76, 490–501 (2016)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Halldórsson, M., Radhakrishnan, J.: Greed is good: approximating independent sets in sparse and bounded-degree graphs. Algorithmica 18(1), 145–163 (1997)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Halldórsson, M.M., Konrad, C.: Computing large independent sets in a single round. Distrib. Comput. 31(1), 69–82 (2018)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kuhn, F., Moscibroda, T., Wattenhofer, R.: Local computation: lower and upper bounds. J. ACM 63(2), 17:1–17:44 (2016)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Sakai, S., Togasaki, M., Yamazaki, K.: A note on greedy algorithms for the maximum weighted independent set problem. Discrete Appl. Math. 126(2–3), 313–322 (2003)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Selkow, S.M.: A probabilistic lower bound on the independence number of graphs. Discrete Math. 132(1–3), 363–365 (1994)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Turán, P.: On an extremal problem in graph theory. Mat. Fiz. Lapok 48, 436–452 (1941). (in Hungarian)MathSciNetGoogle Scholar
  26. 26.
    Wei, V.: A lower bound on the stability number of a simple graph. Technical report, Bell Laboratories (1981)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Ravi B. Boppana
    • 1
  • Magnús M. Halldórsson
    • 2
  • Dror Rawitz
    • 3
    Email author
  1. 1.Department of MathematicsMITCambridgeUSA
  2. 2.School of Computer ScienceReykjavik UniversityReykjavikIceland
  3. 3.Faculty of EngineeringBar-Ilan UniversityRamat GanIsrael

Personalised recommendations