Abstract
We simulated Bayesian CFA models to investigate the power of PPP to detect model misspecification by manipulating sample size, strongly and weakly informative priors for nontarget parameters, degree of misspecification, and whether data were generated and analyzed as normal or ordinal. Rejection rates indicate that PPP lacks power to reject an inappropriate model unless priors are unrealistically restrictive (essentially equivalent to fixing nontarget parameters to zero) and both sample size and misspecification are quite large. We suggest researchers evaluate global fit without priors for nontarget parameters, then search for neglected parameters if PPP indicates poor fit.
Keywords
- Structural equation modeling
- Confirmatory factor analysis
- Bayesian inference
- Model evaluation
- Model modification
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
- 1.
We use the term “Type I error” when referring to any model that does not omit a substantial parameter, although in the categorical data conditions, the model contains another type of misspecification (incorrect likelihood) when analyzed as though the data were normally distributed.
- 2.
The online supplemental materials can be retrieved at the following URL: https://osf.io/buhvg/.
- 3.
Treating N as a categorical factor showed no substantial difference in the effect sizes.
References
Arbuckle, J. L. (2012). IBM SPSS Amos 21 user’s guide. Chicago, IL: IBM.
Asparouhov, T., Muthén, B., & Morin, A. J. S. (2015). Bayesian structural equation modeling with cross-loadings and residual covariances: Comments on Stromeyer et al. Journal of Management, 41, 1561–1577. https://doi.org/10.1177/0149206315591075.
Browne, M. W., & Cudeck, R. (1992). Alternative ways of assessing model fit. Sociological Methods and Research, 21(2), 230–258. https://doi.org/10.1177/0049124192021002005.
Cain, M. K., & Zhang, Z. (in press). Fit for a Bayesian: An evaluation of PPP and DIC for structural equation modeling. Structural Equation Modeling. https://doi.org/10.1080/10705511.2018.1490648.
Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancourt, M., … Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76(1), 1–32. https://doi.org/10.18637/jss.v076.i01.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum.
Depaoli, S. (2012). The ability for posterior predictive checking to identify model misspecification in Bayesian growth mixture modeling. Structural Equation Modeling, 19(4), 534–560. https://doi.org/10.1080/10705511.2012.713251.
Gelman, A., Meng, X.-L., & Stern, H. (1996). Posterior predictive assessment of model fitness via realized discrepancies. Statistica Sinica, 6, 733–807. https://doi.org/10.1.1.142.9951.
Hoijtink, H., & van de Schoot, R. (2018). Testing small variance priors using prior-posterior predictive p values. Psychological Methods, 23(3), 561–569. https://doi.org/10.1037/met0000131.
Hoofs, H., van de Schoot, R., Jansen, N. W., & Kant, I. (2018). Evaluating model fit in Bayesian confirmatory factor analysis with large samples: Simulation study introducing the BRMSEA. Educational and Psychological Measurement, 78(4), 537–568. https://doi.org/10.1177/0013164417709314.
Levy, R. (2011). Bayesian data–model fit assessment for structural equation modeling. Structural Equation Modeling, 18(4), 663–685. https://doi.org/10.1080/10705511.2011.607723.
MacCallum, R. C., Edwards, M. C., & Cai, L. (2012). Hopes and cautions in implementing Bayesian structural equation modeling. Psychological Methods, 17(3), 340–345. https://doi.org/10.1037/a0027131.
Merkle, E. C., & Rosseel, Y. (2018). Blavaan: Bayesian structural equation models via parameter expansion. Journal of Statistical Software, 85(4), 1–30. https://doi.org/10.18637/jss.v085.i04.
Muthén, B. O., & Asparouhov, T. (2012). Bayesian structural equation modeling: A more flexible representation of substantive theory. Psychological Methods, 17(3), 313–335. https://doi.org/10.1037/a0026802.
Muthén, L. K., & Muthén, B. O. (2002). How to use a Monte Carlo study to decide on sample size and determine power. Structural Equation Modeling, 9(4), 599–620. https://doi.org/10.1207/S15328007SEM0904_8.
Muthén, L. K., & Muthén, B. O. (2012). Mplus user’s guide (7th ed.). Los Angeles, CA: Author.
Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In Proceedings of the 3rd International Workshop on Distributed Statistical Computing. Retrieved from http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Proceedings/.
R Core Team. (2018). R: A language and environment for statistical computing (version 3.5.1) [Computer software]. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from the comprehensive R archive network (CRAN): https://www.R-project.org/.
Rhemtulla, M., Brosseau-Liard, P. É., & Savalei, V. (2012). When can categorical variables be treated as continuous? A comparison of robust continuous and categorical SEM estimation methods under suboptimal conditions. Psychological Methods, 17(3), 354–373. https://doi.org/10.1037/a0029315.
Rindskopf, D. (2012). Next steps in Bayesian structural equation models: Comments on, variations of, and extensions to Muthen and Asparouhov (2012). Psychological Methods, 17(3), 336–339. https://doi.org/10.1037/a0027130.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Jorgensen, T.D., Garnier-Villarreal, M., Pornprasermanit, S., Lee, J. (2019). Small-Variance Priors Can Prevent Detecting Important Misspecifications in Bayesian Confirmatory Factor Analysis. In: Wiberg, M., Culpepper, S., Janssen, R., González, J., Molenaar, D. (eds) Quantitative Psychology. IMPS IMPS 2017 2018. Springer Proceedings in Mathematics & Statistics, vol 265. Springer, Cham. https://doi.org/10.1007/978-3-030-01310-3_23
Download citation
DOI: https://doi.org/10.1007/978-3-030-01310-3_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-01309-7
Online ISBN: 978-3-030-01310-3
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)