Advertisement

Affine Correspondences Between Central Cameras for Rapid Relative Pose Estimation

  • Iván Eichhardt
  • Dmitry Chetverikov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11210)

Abstract

This paper presents a novel algorithm to estimate the relative pose, i.e. the 3D rotation and translation of two cameras, from two affine correspondences (ACs) considering any central camera model. The solver is built on new epipolar constraints describing the relationship of an AC and any central views. We also show that the pinhole case is a specialization of the proposed approach. Benefiting from the low number of required correspondences, robust estimators like LO-RANSAC need fewer samples, and thus terminate earlier than using the five-point method. Tests on publicly available datasets containing pinhole, fisheye and catadioptric camera images confirmed that the method often leads to results superior to the state-of-the-art in terms of geometric accuracy.

Keywords

Relative pose Affine correspondences Central cameras 

Supplementary material

474211_1_En_30_MOESM1_ESM.pdf (1.8 mb)
Supplementary material 1 (pdf 1839 KB)

References

  1. 1.
    Barath, D., Toth, T., Hajder, L.: A minimal solution for two-view focal-length estimation using two affine correspondences. In: Conference on Computer Vision and Pattern Recognition, July 2017Google Scholar
  2. 2.
    Bentolila, J., Francos, J.M.: Conic epipolar constraints from affine correspondences. Comput. Vis. Image Underst. 122, 105–114 (2014)CrossRefGoogle Scholar
  3. 3.
    Bentolila, J., Francos, J.M.: Homography and fundamental matrix estimation from region matches using an affine error metric. J. Math. Imaging Vis. 49, 481–491 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chum, O., Matas, J., Kittler, J.: Locally optimized RANSAC. In: Michaelis, B., Krell, G. (eds.) Pattern Recognition. LNCS, pp. 236–243. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45243-0_31CrossRefGoogle Scholar
  5. 5.
    Eichhardt, I., Hajder, L.: Computer vision meets geometric modeling: multi-view reconstruction of surface points and normals using affine correspondences. In: International Conference on Computer Vision Workshops, pp. 2427–2435, October 2017Google Scholar
  6. 6.
    Faugeras, O.: Three-Dimensional Computer Vision: A Geometric Viewpoint. M. I. T. Press, Cambridge (1993)Google Scholar
  7. 7.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hartley, R.I.: In defense of the eight-point algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 19(6), 580–593 (1997)CrossRefGoogle Scholar
  9. 9.
    Köser, K., Koch, R.: Differential spatial resection - pose estimation using a single local image feature. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008 Part IV. LNCS, vol. 5305, pp. 312–325. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-88693-8_23CrossRefGoogle Scholar
  10. 10.
    Lebeda, K., Matas, J., Chum, O.: Fixing the locally optimized RANSAC-full experimental evaluation. In: Proceedings of British Machine Vision Conference, pp. 1–11. Citeseer (2012)Google Scholar
  11. 11.
    Li, H., Hartley, R.: Five-point motion estimation made easy. In: Proceedings of International Conference on Pattern Recognition, vol. 1, pp. 630–633. IEEE (2006)Google Scholar
  12. 12.
    Lindeberg, T., Gårding, J.: Shape-adapted smoothing in estimation of 3-D shape cues from affine deformations of local 2-D brightness structure. Image Vis. Comput. 15(6), 415–434 (1997)CrossRefGoogle Scholar
  13. 13.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 22(10), 761–767 (2004)CrossRefGoogle Scholar
  14. 14.
    Mikolajczyk, K., Schmid, C.: An affine invariant interest point detector. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002 Part I. LNCS, vol. 2350, pp. 128–142. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-47969-4_9CrossRefGoogle Scholar
  15. 15.
    Molnár, J., Eichhardt, I.: A differential geometry approach to camera-independent image correspondence. Comput. Vis. Image Underst. 169, 90–107 (2018)CrossRefGoogle Scholar
  16. 16.
    Morel, J.M., Yu, G.: ASIFT: a new framework for fully affine invariant image comparison. SIAM J. Imaging Sci. 2(2), 438–469 (2009)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Nistér, D.: An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 756–770 (2004)CrossRefGoogle Scholar
  18. 18.
    Perdoch, M., Matas, J., Chum, O.: Epipolar geometry from two correspondences. In: Proceedings of International Conference on Pattern Recognition, vol. 4, pp. 215–219. IEEE (2006)Google Scholar
  19. 19.
    Pritts, J., Kukelova, Z., Larsson, V., Chum, O.: Radially-distorted conjugate translations. In: Conference on Computer Vision and Pattern Recognition, June 2018Google Scholar
  20. 20.
    Raposo, C., Barreto, J.P.: \(\pi \)Match: monocular vSLAM and piecewise planar reconstruction using fast plane correspondences. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016 Part VIII. LNCS, vol. 9912, pp. 380–395. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46484-8_23CrossRefGoogle Scholar
  21. 21.
    Raposo, C., Barreto, J.P.: Theory and practice of structure-from-motion using affine correspondences. In: Conference on Computer Vision and Pattern Recognition, pp. 5470–5478 (2016)Google Scholar
  22. 22.
    Riggi, F., Toews, M., Arbel, T.: Fundamental matrix estimation via TIP-transfer of invariant parameters. In: Proceedings of International Conference on Pattern Recognition, vol. 2, pp. 21–24. IEEE (2006)Google Scholar
  23. 23.
    Scaramuzza, D., Martinelli, A., Siegwart, R.: A flexible technique for accurate omnidirectional camera calibration and structure from motion. In: Proceedings of IEEE Conference on Computer Vision Systems, pp. 45–45. IEEE (2006)Google Scholar
  24. 24.
    Strecha, C., Von Hansen, W., Van Gool, L., Fua, P., Thoennessen, U.: On benchmarking camera calibration and multi-view stereo for high resolution imagery. In: Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)Google Scholar
  25. 25.
    Torr, P., Zisserman, A.: Robust computation and parametrization of multiple view relations. In: Conference on Computer Vision and Pattern Recognition, pp. 727–732. IEEE (1998)Google Scholar
  26. 26.
    Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: a survey. Found. Trends® Comput. Graph. Vis. 3(3), 177–280 (2008)CrossRefGoogle Scholar
  27. 27.
    Vedaldi, A., Fulkerson, B.: VLFeat - an open and portable library of computer vision algorithms. In: Proceedings of ACM Conference on Multimedia (2010)Google Scholar
  28. 28.
    Xu, Y., Monasse, P., Géraud, T., Najman, L.: Tree-based morse regions: a topological approach to local feature detection. IEEE Trans. Image Process. 23(12), 5612–5625 (2014)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Zhang, Z., Rebecq, H., Forster, C., Scaramuzza, D.: Benefit of large field-of-view cameras for visual odometry. In: Proceedings of IEEE Conference on Robotics and Automation, pp. 801–808. IEEE (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.MTA SZTAKIBudapestHungary

Personalised recommendations