Adorni, G., Bergenti, F., Cagnoni, S.: Vehicle license plate recognition by means of cellular automata. In: IV (1998)
Google Scholar
Anagnostopoulos, C.N.E., Anagnostopoulos, I.E., Loumos, V., Kayafas, E.: A license plate-recognition algorithm for intelligent transportation system applications. IEEE Trans. Intell. Transp. Syst. 7(3), 377–392 (2006)
CrossRef
Google Scholar
Anagnostopoulos, C.N.E., Anagnostopoulos, I.E., Psoroulas, I.D., Loumos, V., Kayafas, E.: License plate recognition from still images and video sequences: a survey. IEEE Trans. Intell. Transp. Syst. 9(3), 377–391 (2008)
CrossRef
Google Scholar
Arteta, C., Lempitsky, V., Noble, J.A., Zisserman, A.: Interactive object counting. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 504–518. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_33
CrossRef
Google Scholar
Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)
CrossRef
Google Scholar
Bulan, O., Kozitsky, V., Ramesh, P., Shreve, M.: Segmentation-and annotation-free license plate recognition with deep localization and failure identification. IEEE Trans. Intell. Transp. Syst. 18(9), 2351–2363 (2017)
CrossRef
Google Scholar
Cheang, T.K., Chong, Y.S., Tay, Y.H.: Segmentation-free vehicle license plate recognition using convnet-RNN. arXiv preprint arXiv:1701.06439 (2017)
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)
CrossRef
Google Scholar
Cherng, S., Fang, C.Y., Chen, C.P., Chen, S.W.: Critical motion detection of nearby moving vehicles in a vision-based driver-assistance system. IEEE Tran. Intell. Transp. Syst. 10(1), 70–82 (2009)
CrossRef
Google Scholar
Davies, P., Emmott, N., Ayland, N.: License plate recognition technology for toll violation enforcement. In: Image Analysis for Transport Applications (1990)
Google Scholar
Du, S., Ibrahim, M., Shehata, M., Badawy, W.: Automatic license plate recognition (ALPR): a state-of-the-art review. IEEE Trans. Circuits Syst. Video Technol. 23(2), 311–325 (2013)
CrossRef
Google Scholar
Duan, T.D., Du, T.H., Phuoc, T.V., Hoang, N.V.: Building an automatic vehicle license plate recognition system. In: RIVF (2005)
Google Scholar
Hegt, H.A., De La Haye, R.J., Khan, N.A.: A high performance license plate recognition system (1998)
Google Scholar
Hsu, G.S., Alexandra, P., Chen, J.C., Yeh, F., Chen, M.H.: License plate recognition for categorized applications. In: ICVES (2011)
Google Scholar
Hsu, G.S., Chen, J.C., Chung, Y.Z.: Application-oriented license plate recognition. IEEE Trans. Veh. Technol. 62(2), 552–561 (2013)
CrossRef
Google Scholar
Huang, Y.S., Weng, Y.S., Zhou, M.: Critical scenarios and their identification in parallel railroad level crossing traffic control systems. IEEE Trans. Intell. Transp. Syst. 11(4), 968–977 (2010)
CrossRef
Google Scholar
Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In: ACM MM (2014)
Google Scholar
Kim, K.K., Kim, K., Kim, J., Kim, H.J.: Learning-based approach for license plate recognition. In: Neural Networks for Signal Processing (2000)
Google Scholar
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS (2012)
Google Scholar
Lempitsky, V., Zisserman, A.: Learning to count objects in images. In: NIPS (2010)
Google Scholar
Li, H., Shen, C.: Reading car license plates using deep convolutional neural networks and LSTMs. arXiv preprint arXiv:1601.05610 (2016)
Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
CrossRef
Google Scholar
Liu, X., Wang, Z., Feng, J., Xi, H.: Highway vehicle counting in compressed domain. In: CVPR (2016)
Google Scholar
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR (2015)
Google Scholar
Masood, S.Z., Shu, G., Dehghan, A., Ortiz, E.G.: License plate detection and recognition using deeply learned convolutional neural networks. arXiv preprint arXiv:1703.07330 (2017)
Naito, T., Tsukada, T., Yamada, K., Kozuka, K., Yamamoto, S.: Robust license-plate recognition method for passing vehicles under outside environment. IEEE Trans. Veh. Technol. 49(6), 2309–2319 (2000)
CrossRef
Google Scholar
Nijhuis, J., et al.: Car license plate recognition with neural networks and fuzzy logic (1995)
Google Scholar
Omitaomu, O.A., Ganguly, A.R., Patton, B.W., Protopopescu, V.A.: Anomaly detection in radiation sensor data with application to transportation security. IEEE Trans. Intell. Transp. Syst. 10(2), 324–334 (2009)
CrossRef
Google Scholar
Parizi, S.N., Targhi, A.T., Aghazadeh, O., Eklundh, J.O.: Reading street signs using a generic structured object detection and signature recognition approach. In: VISAPP (2009)
Google Scholar
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR (2016)
Google Scholar
Wang, F., Man, L., Wang, B., Xiao, Y., Pan, W., Lu, X.: Fuzzy-based algorithm for color recognition of license plates. Pattern Recogn. Lett. 29(7), 1007–1020 (2008)
CrossRef
Google Scholar
Wu, Y., Li, J.: License plate recognition using deep FCN. In: Sun, F., Liu, H., Hu, D. (eds.) ICCSIP 2016. CCIS, vol. 710, pp. 225–234. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-5230-9_25
CrossRef
Google Scholar
Yamaguchi, K., Nagaya, Y., Ueda, K., Nemoto, H., Nakagawa, M.: A method for identifying specific vehicles using template matching (1999)
Google Scholar
Yu, M., Kim, Y.D.: An approach to Korean license plate recognition based on vertical edge matching (2000)
Google Scholar
Zhu, S., Dianat, S., Mestha, L.K.: End-to-end system of license plate localization and recognition. JEI 24(2), 023020 (2015)
Google Scholar