Skip to main content

A Multi-feature Classifier for Verbal Metaphor Identification in Russian Texts

  • Conference paper
  • First Online:
Artificial Intelligence and Natural Language (AINL 2018)

Abstract

The paper presents a supervised machine learning experiment with multiple features for identification of sentences containing verbal metaphors in raw Russian text. We introduce the custom-created training dataset, describe the feature engineering techniques, and discuss the results. The following set of features is applied: distributional semantic features, lexical and morphosyntactic co-occurrence frequencies, flag words, quotation marks, and sentence length. We combine these features into models of varying complexity; the results of the experiment demonstrate that fairly simple models based on lexical, morphosyntactic and semantic features are able to produce competitive results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/yubadryzlova/metaphor_dataset_20_verbs.git.

  2. 2.

    The definitions throughout the paper are quoted from the Dictionary of the Russian Language [44].

  3. 3.

    LinearSVC, as implemented in scikit-learn [32].

References

  1. Ahmad, K., Gillam, L., Tostevin, L.: Weirdness indexing for logical document extrapolation and retrieval (WILDER). In: Voorhees, E., Harman, D. (eds.) Proceedings of the 8th Text Retrieval Conference, TREC 8, Gaithersburg, MA, pp. 717–724 (2000)

    Google Scholar 

  2. Apresjan, Yu. D.: Izbrannyye trudy, t.1. Leksicheskaya semantika. Sinonimicheskiye sredstva yazyka/Selected works, vol. 1. Lexical semantics. The synonymic means of the language, 2nd edn. LRC Publishing House, Moscow (1995)

    Google Scholar 

  3. Beigman Klebanov, B., Leong, C.W., Gutierrez, E.D., Shutova, E., Flor, M.: Semantic classifications for detection of verb metaphors. In: Proceedings of the 54th Annual Meeting of ACL 2016, Berlin, Germany, vol. 2, pp. 101–106 (2016)

    Google Scholar 

  4. Beigman Klebanov, B., Leong, C.W., Heilman, M., Flor, M.: Different texts, same metaphors: unigrams and beyond. In: Proceedings of the Second Workshop on Metaphor in NLP, Baltimore, MD, pp. 11–17 (2014)

    Google Scholar 

  5. Benko, V., Zakharov, V.: Very large Russian corpora: new opportunities and new challenges. In: Selegey, V. (ed.) Proceedings of the Annual International Conference “Dialogue”, Moscow, Russia, pp. 83–98 (2016)

    Google Scholar 

  6. Cressie, N., Read, T.R.C.: Multinomial goodness-of-fit tests. J. R. Stat. Soc. Ser. B (Methodol.) 46(3), 440–464 (1984)

    MathSciNet  MATH  Google Scholar 

  7. Droganova, K.A., Medyankin, N.S.: NLP pipeline for Russian: an easy-to-use web application for morphological and syntactic annotation. In: Proceedings of the Annual International Conference “Dialogue”, Moscow, Russia (2016)

    Google Scholar 

  8. Dunn, J.: Evaluating the premises and results of four metaphor identification systems. In: Proceedings of CICLing 2013, Samos, Greece, pp. 471–486 (2013a)

    Chapter  Google Scholar 

  9. Dunn, J.: What metaphor identification systems can tell us about metaphor-in-language. In: Proceedings of the First Workshop on Metaphor in NLP, Atlanta, GA, pp. 1–10 (2013b)

    Google Scholar 

  10. Gandy, L., et al.: Automatic identification of conceptual metaphors with limited knowledge. In: Proceedings of the 27th AAAI Conference on Artificial Intelligence, pp. 328–334. AAAI Press, Bellevue, WA (2013)

    Google Scholar 

  11. Gedigian, M., Bryant, J., Narayanan, S., Ciric, B.: Catching metaphors. In: Proceedings of the Third Workshop on Scalable Natural Language Understanding, ScaNaLU 2006, New York City, pp. 41–48 (2006)

    Google Scholar 

  12. Goatly, A.: The Language of Metaphors. Routledge, Abingdon (2011)

    Google Scholar 

  13. Heintz, I., et al.: Automatic extraction of linguistic metaphors with LDA topic modeling. In: Proceedings of the First Workshop on Metaphor in NLP, Atlanta, GA, pp. 58–66 (2013)

    Google Scholar 

  14. Herbelot, A., Kochmar, E.: ‘Calling on the classical phone’: a distributional model of adjective-noun errors in learners’ English. In: Proceedings of COLING 2016, Osaka, Japan, pp. 976–986 (2016)

    Google Scholar 

  15. Hovy, D., et al.: Identifying metaphorical word use with tree kernels. In: Proceedings of the First Workshop on Metaphor in NLP, Atlanta, GA, pp. 52–57 (2013)

    Google Scholar 

  16. Kilgarriff, A., et al.: The Sketch Engine: ten years on. Lexicography 1, 7–36 (2014)

    Article  Google Scholar 

  17. Krishnakumaran, S., Zhu, X.: Hunting elusive metaphors using lexical resources. In: Proceedings of the Workshop on Computational Approaches to Figurative Language, NAACL-HLT 2007, Rochester, NY, pp. 13–20 (2007)

    Google Scholar 

  18. Kullback, S., Leibler, R.A.: On Information and Sufficiency. Annals of Mathematical Statistics, vol. 22(1), pp. 79–86. Institute of Mathematical Statistics, Ann Arbor (1951)

    MATH  Google Scholar 

  19. Kutuzov, A., Kuzmenko, E.: WebVectors: a toolkit for building web interfaces for vector semantic models. In: Ignatov, D.I., et al. (eds.) AIST 2016. CCIS, vol. 661, pp. 155–161. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52920-2_15

    Chapter  Google Scholar 

  20. Lakoff, G., Johnson, M.: Metaphors We Live By. The University of Chicago Press, Chicago (1980)

    Google Scholar 

  21. Levshina, N.: How to Do Linguistics with R: Data Exploration and Statistical Analysis. John Benjamins Publishing Company, Amsterdam (2015)

    Book  Google Scholar 

  22. Li, L., Sporleder, C.: Classifier combination for contextual idiom detection without labelled data. In: Proceedings of EMNLP 2009, Singapore, pp. 315–323 (2009)

    Google Scholar 

  23. Li, L., Sporleder, C.: Using gaussian mixture models to detect figurative language in context. In: Proceedings of NAACL HLT 2010, Los Angeles, CA, pp. 297–300 (2010)

    Google Scholar 

  24. Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Processing. MIT Press, Cambridge (1999)

    MATH  Google Scholar 

  25. Mason, Z.J.: CorMet: a computational, corpus-based conventional metaphor extraction system. Comput. Linguist. 30(1), 23–44 (2004)

    Article  MathSciNet  Google Scholar 

  26. Mehlig, H.R.: Semantika predlozheniya i semantika vida v russkom yazyke/The semantics of the sentence and the semantics of the aspect in the Russian language. In: Bulygina, T.V., Kibrik, A.E. (eds.) Novoye v zarubezhnoy lingvistike, vyp. 15. Sovremennaya zarubezhnaya lingvistika/The state-of-the-art in international linguistics, issue 15. Contemporary international linguistics, pp. 227–249. Progress, Moscow (1985)

    Google Scholar 

  27. Mohler, M., Bracewell, D., Tomlinson, M., Hinote, D.: Semantic signatures for example-based linguistic metaphor detection. In: Proceedings of the First Workshop on Metaphor in NLP, Atlanta, GA, pp. 27–35 (2013)

    Google Scholar 

  28. Mohler, M., Rink, B., Bracewell, D.B., Tomlinson, M.T.: A novel distributional approach to multilingual conceptual metaphor recognition. In: Proceedings of COLING 2014: Technical Papers, Dublin, Ireland, pp. 1752–1763 (2014)

    Google Scholar 

  29. Neuman, Y., et al.: Metaphor identification in large texts corpora. PLoS ONE 8(4), e62343 (2013)

    Article  Google Scholar 

  30. Ovchinnikova, E., Israel, R., Wertheim, S., Zaytsev, V., Montazeri, N., Hobbs, J.: Abductive inference for interpretation of metaphors. In: Proceedings of the 2nd Workshop on Metaphor in NLP, NAACL-HLT 2014, Denver, CO, pp. 33–41 (2014)

    Google Scholar 

  31. Panicheva, P., Badryzlova, Yu.: Distributional semantic features in Russian verbal metaphor identification. In: Selegey, V. (ed.) Proceedings of the Annual International Conference “Dialogue”, vol. 1, pp. 179–190. Moscow, Russia (2017)

    Google Scholar 

  32. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  33. Peters, W., Peters, I.: Lexicalised systematic polysemy in WordNet. In: Proceedings of LREC 2000, Athens, Greece (2000)

    Google Scholar 

  34. RusVectōrēs: Word Embeddings for Russian Online. http://rusvectores.org/ru/models/. Accessed 01 July 2018

  35. Shutova, E., Kiela, D., Maillard, J.: Black holes and white rabbits: metaphor identification with visual features. In: Proceedings of NAACL HLT 2016, pp. 160–170 (2016)

    Google Scholar 

  36. Steen, G.J., Dorst, L., Herrmann, B., Kaal, A., Krennmayr, T., Pasma, T.: A Method for Linguistic Metaphor Identification: from MIP to MIPVU. John Benjamins Publishing, Amsterdam (2010)

    Book  Google Scholar 

  37. Strzalkowski, T., et al.: Robust extraction of metaphor from novel data. In: Proceedings of the First Workshop on Metaphor in NLP, Atlanta, GA, pp. 67–76 (2013)

    Google Scholar 

  38. Tsvetkov, Y., Boytsov, L., Gershman, A., Nyberg, E., Dyer, C.: Metaphor detection with cross-lingual model transfer. In: Proceedings of the 52nd Annual Meeting of ACL, vol. 1, Baltimore, MD, pp. 248–258 (2014)

    Google Scholar 

  39. Tsvetkov, Y., Mukomel, E., Gershman, A.: Cross-lingual metaphor detection using common semantic features. In: Proceedings of the First Workshop on Metaphor in NLP, Atlanta, GA, pp. 45–51 (2013)

    Google Scholar 

  40. Turney, P.D., Neuman, Y., Assaf, D., Cohen, Y.: Literal and metaphorical sense identification through concrete and abstract context. In: Proceedings of EMNLP 2011, Edinburgh, UK, pp. 680–690 (2011)

    Google Scholar 

  41. Veale, T., Shutova, E., Beigman Klebanov, B.: Metaphor: a computational perspective. In: Synthesis Lectures on Human Language Technologies, vol. 9, no. 1, pp. 1–160 (2016)

    Article  Google Scholar 

  42. Vendler, Z.: Verbs and times. Philos. Rev. 66, 143–160 (1957)

    Article  Google Scholar 

  43. Wilks, Y.: Making preferences more active. Artif. Intell. 11(3), 197–223 (1978)

    Article  Google Scholar 

  44. Yevgenyeva, A.P. (ed.): Slovar russkogo yazyka v 4 tomakh/The dictionary of the Russian language in 4 volumes, 2nd edn. The Institute for the Russian Language, Moscow (1981–1984)

    Google Scholar 

Download references

Acknowledgements

The contribution to this study by Polina Panicheva is supported by RFBR grant № 16-06-00529.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulia Badryzlova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Badryzlova, Y., Panicheva, P. (2018). A Multi-feature Classifier for Verbal Metaphor Identification in Russian Texts. In: Ustalov, D., Filchenkov, A., Pivovarova, L., Žižka, J. (eds) Artificial Intelligence and Natural Language. AINL 2018. Communications in Computer and Information Science, vol 930. Springer, Cham. https://doi.org/10.1007/978-3-030-01204-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01204-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01203-8

  • Online ISBN: 978-3-030-01204-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics