Abstract
The paper presents a supervised machine learning experiment with multiple features for identification of sentences containing verbal metaphors in raw Russian text. We introduce the custom-created training dataset, describe the feature engineering techniques, and discuss the results. The following set of features is applied: distributional semantic features, lexical and morphosyntactic co-occurrence frequencies, flag words, quotation marks, and sentence length. We combine these features into models of varying complexity; the results of the experiment demonstrate that fairly simple models based on lexical, morphosyntactic and semantic features are able to produce competitive results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Ahmad, K., Gillam, L., Tostevin, L.: Weirdness indexing for logical document extrapolation and retrieval (WILDER). In: Voorhees, E., Harman, D. (eds.) Proceedings of the 8th Text Retrieval Conference, TREC 8, Gaithersburg, MA, pp. 717–724 (2000)
Apresjan, Yu. D.: Izbrannyye trudy, t.1. Leksicheskaya semantika. Sinonimicheskiye sredstva yazyka/Selected works, vol. 1. Lexical semantics. The synonymic means of the language, 2nd edn. LRC Publishing House, Moscow (1995)
Beigman Klebanov, B., Leong, C.W., Gutierrez, E.D., Shutova, E., Flor, M.: Semantic classifications for detection of verb metaphors. In: Proceedings of the 54th Annual Meeting of ACL 2016, Berlin, Germany, vol. 2, pp. 101–106 (2016)
Beigman Klebanov, B., Leong, C.W., Heilman, M., Flor, M.: Different texts, same metaphors: unigrams and beyond. In: Proceedings of the Second Workshop on Metaphor in NLP, Baltimore, MD, pp. 11–17 (2014)
Benko, V., Zakharov, V.: Very large Russian corpora: new opportunities and new challenges. In: Selegey, V. (ed.) Proceedings of the Annual International Conference “Dialogue”, Moscow, Russia, pp. 83–98 (2016)
Cressie, N., Read, T.R.C.: Multinomial goodness-of-fit tests. J. R. Stat. Soc. Ser. B (Methodol.) 46(3), 440–464 (1984)
Droganova, K.A., Medyankin, N.S.: NLP pipeline for Russian: an easy-to-use web application for morphological and syntactic annotation. In: Proceedings of the Annual International Conference “Dialogue”, Moscow, Russia (2016)
Dunn, J.: Evaluating the premises and results of four metaphor identification systems. In: Proceedings of CICLing 2013, Samos, Greece, pp. 471–486 (2013a)
Dunn, J.: What metaphor identification systems can tell us about metaphor-in-language. In: Proceedings of the First Workshop on Metaphor in NLP, Atlanta, GA, pp. 1–10 (2013b)
Gandy, L., et al.: Automatic identification of conceptual metaphors with limited knowledge. In: Proceedings of the 27th AAAI Conference on Artificial Intelligence, pp. 328–334. AAAI Press, Bellevue, WA (2013)
Gedigian, M., Bryant, J., Narayanan, S., Ciric, B.: Catching metaphors. In: Proceedings of the Third Workshop on Scalable Natural Language Understanding, ScaNaLU 2006, New York City, pp. 41–48 (2006)
Goatly, A.: The Language of Metaphors. Routledge, Abingdon (2011)
Heintz, I., et al.: Automatic extraction of linguistic metaphors with LDA topic modeling. In: Proceedings of the First Workshop on Metaphor in NLP, Atlanta, GA, pp. 58–66 (2013)
Herbelot, A., Kochmar, E.: ‘Calling on the classical phone’: a distributional model of adjective-noun errors in learners’ English. In: Proceedings of COLING 2016, Osaka, Japan, pp. 976–986 (2016)
Hovy, D., et al.: Identifying metaphorical word use with tree kernels. In: Proceedings of the First Workshop on Metaphor in NLP, Atlanta, GA, pp. 52–57 (2013)
Kilgarriff, A., et al.: The Sketch Engine: ten years on. Lexicography 1, 7–36 (2014)
Krishnakumaran, S., Zhu, X.: Hunting elusive metaphors using lexical resources. In: Proceedings of the Workshop on Computational Approaches to Figurative Language, NAACL-HLT 2007, Rochester, NY, pp. 13–20 (2007)
Kullback, S., Leibler, R.A.: On Information and Sufficiency. Annals of Mathematical Statistics, vol. 22(1), pp. 79–86. Institute of Mathematical Statistics, Ann Arbor (1951)
Kutuzov, A., Kuzmenko, E.: WebVectors: a toolkit for building web interfaces for vector semantic models. In: Ignatov, D.I., et al. (eds.) AIST 2016. CCIS, vol. 661, pp. 155–161. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52920-2_15
Lakoff, G., Johnson, M.: Metaphors We Live By. The University of Chicago Press, Chicago (1980)
Levshina, N.: How to Do Linguistics with R: Data Exploration and Statistical Analysis. John Benjamins Publishing Company, Amsterdam (2015)
Li, L., Sporleder, C.: Classifier combination for contextual idiom detection without labelled data. In: Proceedings of EMNLP 2009, Singapore, pp. 315–323 (2009)
Li, L., Sporleder, C.: Using gaussian mixture models to detect figurative language in context. In: Proceedings of NAACL HLT 2010, Los Angeles, CA, pp. 297–300 (2010)
Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Processing. MIT Press, Cambridge (1999)
Mason, Z.J.: CorMet: a computational, corpus-based conventional metaphor extraction system. Comput. Linguist. 30(1), 23–44 (2004)
Mehlig, H.R.: Semantika predlozheniya i semantika vida v russkom yazyke/The semantics of the sentence and the semantics of the aspect in the Russian language. In: Bulygina, T.V., Kibrik, A.E. (eds.) Novoye v zarubezhnoy lingvistike, vyp. 15. Sovremennaya zarubezhnaya lingvistika/The state-of-the-art in international linguistics, issue 15. Contemporary international linguistics, pp. 227–249. Progress, Moscow (1985)
Mohler, M., Bracewell, D., Tomlinson, M., Hinote, D.: Semantic signatures for example-based linguistic metaphor detection. In: Proceedings of the First Workshop on Metaphor in NLP, Atlanta, GA, pp. 27–35 (2013)
Mohler, M., Rink, B., Bracewell, D.B., Tomlinson, M.T.: A novel distributional approach to multilingual conceptual metaphor recognition. In: Proceedings of COLING 2014: Technical Papers, Dublin, Ireland, pp. 1752–1763 (2014)
Neuman, Y., et al.: Metaphor identification in large texts corpora. PLoS ONE 8(4), e62343 (2013)
Ovchinnikova, E., Israel, R., Wertheim, S., Zaytsev, V., Montazeri, N., Hobbs, J.: Abductive inference for interpretation of metaphors. In: Proceedings of the 2nd Workshop on Metaphor in NLP, NAACL-HLT 2014, Denver, CO, pp. 33–41 (2014)
Panicheva, P., Badryzlova, Yu.: Distributional semantic features in Russian verbal metaphor identification. In: Selegey, V. (ed.) Proceedings of the Annual International Conference “Dialogue”, vol. 1, pp. 179–190. Moscow, Russia (2017)
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Peters, W., Peters, I.: Lexicalised systematic polysemy in WordNet. In: Proceedings of LREC 2000, Athens, Greece (2000)
RusVectōrēs: Word Embeddings for Russian Online. http://rusvectores.org/ru/models/. Accessed 01 July 2018
Shutova, E., Kiela, D., Maillard, J.: Black holes and white rabbits: metaphor identification with visual features. In: Proceedings of NAACL HLT 2016, pp. 160–170 (2016)
Steen, G.J., Dorst, L., Herrmann, B., Kaal, A., Krennmayr, T., Pasma, T.: A Method for Linguistic Metaphor Identification: from MIP to MIPVU. John Benjamins Publishing, Amsterdam (2010)
Strzalkowski, T., et al.: Robust extraction of metaphor from novel data. In: Proceedings of the First Workshop on Metaphor in NLP, Atlanta, GA, pp. 67–76 (2013)
Tsvetkov, Y., Boytsov, L., Gershman, A., Nyberg, E., Dyer, C.: Metaphor detection with cross-lingual model transfer. In: Proceedings of the 52nd Annual Meeting of ACL, vol. 1, Baltimore, MD, pp. 248–258 (2014)
Tsvetkov, Y., Mukomel, E., Gershman, A.: Cross-lingual metaphor detection using common semantic features. In: Proceedings of the First Workshop on Metaphor in NLP, Atlanta, GA, pp. 45–51 (2013)
Turney, P.D., Neuman, Y., Assaf, D., Cohen, Y.: Literal and metaphorical sense identification through concrete and abstract context. In: Proceedings of EMNLP 2011, Edinburgh, UK, pp. 680–690 (2011)
Veale, T., Shutova, E., Beigman Klebanov, B.: Metaphor: a computational perspective. In: Synthesis Lectures on Human Language Technologies, vol. 9, no. 1, pp. 1–160 (2016)
Vendler, Z.: Verbs and times. Philos. Rev. 66, 143–160 (1957)
Wilks, Y.: Making preferences more active. Artif. Intell. 11(3), 197–223 (1978)
Yevgenyeva, A.P. (ed.): Slovar russkogo yazyka v 4 tomakh/The dictionary of the Russian language in 4 volumes, 2nd edn. The Institute for the Russian Language, Moscow (1981–1984)
Acknowledgements
The contribution to this study by Polina Panicheva is supported by RFBR grant № 16-06-00529.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Badryzlova, Y., Panicheva, P. (2018). A Multi-feature Classifier for Verbal Metaphor Identification in Russian Texts. In: Ustalov, D., Filchenkov, A., Pivovarova, L., Žižka, J. (eds) Artificial Intelligence and Natural Language. AINL 2018. Communications in Computer and Information Science, vol 930. Springer, Cham. https://doi.org/10.1007/978-3-030-01204-5_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-01204-5_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-01203-8
Online ISBN: 978-3-030-01204-5
eBook Packages: Computer ScienceComputer Science (R0)