Advertisement

Stierlitz Meets SVM: Humor Detection in Russian

  • Anton Ermilov
  • Natasha Murashkina
  • Valeria Goryacheva
  • Pavel Braslavski
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 930)

Abstract

In this paper, we investigate the problem of the humor detection for Russian language. For experiments, we used a large collection of jokes from social media and a contrast collection of non-funny sentences, as well as a small collection of puns. We implemented a large set of features and trained several SVM classifiers. The results are promising and establish a baseline for further research in this direction.

Keywords

Humor recognition Evaluation 

Notes

Acknowledgments

We thank Valeria Bolotova and Vladislav Blinov for sharing their humor dataset, as well as Natalia Loukachevitch for providing us with the RuWordNet data.

References

  1. 1.
    Attardo, S.: Linguistic Theories of Humor. Mouton de Gruyter, Berlin (1994)Google Scholar
  2. 2.
    Bolotova, V., et al.: Which IR model has a better sense of humor? Search over a large collection of jokes. In: Dialogue, pp. 29–42 (2017)Google Scholar
  3. 3.
    Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011)CrossRefGoogle Scholar
  4. 4.
    Korobov, M.: Morphological analyzer and generator for russian and ukrainian languages. In: Khachay, M.Y., Konstantinova, N., Panchenko, A., Ignatov, D.I., Labunets, V.G. (eds.) AIST 2015. CCIS, vol. 542, pp. 320–332. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-26123-2_31CrossRefGoogle Scholar
  5. 5.
    Kutuzov, A., Kuzmenko, E.: WebVectors: a toolkit for building web interfaces for vector semantic models. In: Ignatov, D.I., et al. (eds.) AIST 2016. CCIS, vol. 661, pp. 155–161. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-52920-2_15CrossRefGoogle Scholar
  6. 6.
    Mihalcea, R., Pulman, S.: Characterizing humour: an exploration of features in humorous texts. In: Gelbukh, A. (ed.) CICLing 2007. LNCS, vol. 4394, pp. 337–347. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-70939-8_30CrossRefGoogle Scholar
  7. 7.
    Mihalcea, R., Strapparava, C.: Learning to laugh (automatically): computational models for humor recognition. Comput. Intell. 22(2), 126–142 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Miller, T., Hempelmann, C., Gurevych, I.: SemEval-2017 Task 7: detection and interpretation of English puns. In: SemEval (2017)Google Scholar
  9. 9.
    Potash, P., Romanov, A., Rumshisky, A.: SemEval-2017 Task 6: #HashtagWars: learning a sense of humor. In: SemEval, pp. 49–57 (2017)Google Scholar
  10. 10.
    Rajadesingan, A., Zafarani, R., Liu, H.: Sarcasm detection on Twitter: a behavioral modeling approach. In: Proceedings of WSDM, pp. 97–106 (2015)Google Scholar
  11. 11.
    Reyes, A., Rosso, P., Veale, T.: A multidimensional approach for detecting irony in Twitter. Language resources and evaluation 47(1), 239–268 (2013)CrossRefGoogle Scholar
  12. 12.
    Shahaf, D., Horvitz, E., Mankoff, R.: Inside jokes: identifying humorous cartoon captions. In: Proceedings of KDD, pp. 1065–1074 (2015)Google Scholar
  13. 13.
    Yang, D., Lavie, A., Dyer, C., Hovy, E.: Humor recognition and humor anchor extraction. In: Proceedings of EMNLP, pp. 2367–2376 (2015)Google Scholar
  14. 14.
    Zhang, R., Liu, N.: Recognizing humor on Twitter. In: CIKM, pp. 889–898 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Anton Ermilov
    • 1
  • Natasha Murashkina
    • 1
  • Valeria Goryacheva
    • 2
  • Pavel Braslavski
    • 1
    • 3
    • 4
  1. 1.National Research University Higher School of EconomicsSaint PetersburgRussia
  2. 2.ITMO UniversitySaint PetersburgRussia
  3. 3.Ural Federal UniversityYekaterinburgRussia
  4. 4.JetBrains ResearchSaint PetersburgRussia

Personalised recommendations