As many other machine learning driven medical image analysis tasks, skin image analysis suffers from a chronic lack of labeled data and skewed class distributions, which poses problems for the training of robust and well-generalizing models. The ability to synthesize realistic looking images of skin lesions could act as a reliever for the aforementioned problems. Generative Adversarial Networks (GANs) have been successfully used to synthesize realistically looking medical images, however limited to low resolution, whereas machine learning models for challenging tasks such as skin lesion segmentation or classification benefit from much higher resolution data. In this work, we successfully synthesize realistically looking images of skin lesions with GANs at such high resolution. Therefore, we utilize the concept of progressive growing, which we both quantitatively and qualitatively compare to other GAN architectures such as the DCGAN and the LAPGAN. Our results show that with the help of progressive growing, we can synthesize highly realistic dermoscopic images of skin lesions that even expert dermatologists find hard to distinguish from real ones.


  1. 1.
    Antoniou, A., Storkey, A., Edwards, H.: Data augmentation generative adversarial networks. arXiv preprint arXiv:1711.04340 (2017)
  2. 2.
    Bi, L., Kim, J., Kumar, A., Feng, D., Fulham, M.: Synthesis of Positron Emission Tomography (PET) images via multi-channel Generative Adversarial Networks (GANs). In: Cardoso, M.J., et al. (eds.) CMMI/SWITCH/RAMBO -2017. LNCS, vol. 10555, pp. 43–51. Springer, Cham (2017). Scholar
  3. 3.
    Denton, E.L., Chintala, S., Fergus, R., et al.: Deep generative image models using a Laplacian pyramid of adversarial networks. In: NIPS, pp. 1486–1494 (2015)Google Scholar
  4. 4.
    Frid-Adar, M., Klang, E., Amitai, M., Goldberger, J., Greenspan, H.: Synthetic data augmentation using gan for improved liver lesion classification. In: ISBI, pp. 289–293 (2018)Google Scholar
  5. 5.
    Goodfellow, I., et al.: Generative adversarial nets. In: NIPS, pp. 2672–2680 (2014)Google Scholar
  6. 6.
    Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR, pp. 5967–5976, July 2017Google Scholar
  7. 7.
    Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: ICLR (2018)Google Scholar
  8. 8.
    Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR, pp. 105–114 (2017)Google Scholar
  9. 9.
    Matsunaga, K., Hamada, A., Minagawa, A., Koga, H.: Image classification of melanoma, nevus and seborrheic keratosis by deep neural network ensemble. arXiv preprint arXiv:1703.03108 (2017)
  10. 10.
    Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)
  11. 11.
    Navarro, F., Conjeti, S., Tombari, F., Navab, N.: Webly supervised learning for skin lesion classification. arXiv preprint arXiv:1804.00177 (2018)
  12. 12.
    Osokin, A., Chessel, A., Carazo-Salas, R.E., Vaggi, F.: GANs for biological image synthesis. In: ICCV, pp. 2252–2261 (2017)Google Scholar
  13. 13.
    Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. CoRR abs/1511.06434 (2015)Google Scholar
  14. 14.
    Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 146–157. Springer, Cham (2017). Scholar
  15. 15.
    Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: CVPR, June 2018Google Scholar
  16. 16.
    Wolterink, J.M., Dinkla, A.M., Savenije, M.H.F., Seevinck, P.R., van den Berg, C.A.T., Išgum, I.: Deep MR to CT synthesis using unpaired data. In: Tsaftaris, S.A., Gooya, A., Frangi, A.F., Prince, J.L. (eds.) SASHIMI 2017. LNCS, vol. 10557, pp. 14–23. Springer, Cham (2017). Scholar
  17. 17.
    Yang, Q., et al.: Low-dose CT image denoising using a generative adversarial network with wasserstein distance and perceptual loss. IEEE Trans. Med. Imaging 37(6), 1348–1357 (2018)CrossRefGoogle Scholar
  18. 18.
    Yu, L., Chen, H., Dou, Q., Qin, J., Heng, P.A.: Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans. Med. Imaging 36(4), 994–1004 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Christoph Baur
    • 1
    Email author
  • Shadi Albarqouni
    • 1
  • Nassir Navab
    • 1
    • 2
  1. 1.Computer Aided Medical Procedures (CAMP)TU MunichMunichGermany
  2. 2.Whiting School of EngineeringJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations