Dolina, M.Y., et al.: interbronchoscopist variability in endobronchial path selection: a simulation study. Chest 133(4), 897–905 (2008)
CrossRef
Google Scholar
Reynisson, P.J., et al.: Navigated bronchoscopy: a technical review. J. Bronchol. Interv. Pulmonol. 21(3), 242–264 (2014)
CrossRef
Google Scholar
Khan, K.A., Nardelli, P., Jaeger, A., O’Shea, C., Cantillon-Murphy, P., Kennedy, M.P.: Navigational bronchoscopy for early lung cancer: a road to therapy. Adv. Therapy 33(4), 580–596 (2016)
CrossRef
Google Scholar
Khandhar, S.J., et al.: Electromagnetic navigation bronchoscopy to access lung lesions in 1,000 subjects: first results of the prospective, multicenter NAVIGATE study. BMC Pulm. Med. 17(1), 59 (2017)
Google Scholar
Ikezawa, Y., et al: Usefulness of endobronchial ultrasonography with a guide sheath and virtual bronchoscopic navigation for ground-glass opacity lesions. Ann. Thoracic Surg. 103(2), 470–475 (2017)
CrossRef
Google Scholar
Asano, F., et al.: Virtual bronchoscopic navigation without X-ray fluoroscopy to diagnose peripheral pulmonary lesions: a randomized trial. BMC Pulm. Med. 17(184), 12 (2017)
Google Scholar
Eberhardt, R., Kahn, N., Gompelmann, D., Schumann, M., Heussel, C.P., Herth, F.J.: LungPoint-a new approach to peripheral lesions. J. Thorac. Oncol. 5(10), 1559–1563 (2010)
CrossRef
Google Scholar
Florez Valencia, L., Morales Pinzón, A., Richard, J.-C., Hernandez Hoyos, M., Orkisz, M.: Simultaneous skeletonization and graph description of airway trees in 3D CT images. In: XXVème Colloque GRETSI, Lyon, France, September 2015
Google Scholar
Gómez Betancur, D.A., et al.: Airway segmentation, skeletonization, and tree matching to improve registration of 3D CT images with large opacities in the lungs. In: International Conference on Computer Vision and Graphics (ICCVG), vol. 9972, pp. 395–407 (2016)
CrossRef
Google Scholar
Pinzón, A.M., Hoyos, M.H., Richard, J.C., Flórez-Valencia, L., Orkisz, M.: A tree-matching algorithm: Application to airways in CT images of subjects with the acute respiratory distress syndrome. Med. Image Anal. 35, 101–115 (2017)
Google Scholar
Bauer, C., Eberlein, M., Beichel, R.R.: Airway tree reconstruction in expiration chest CT scans facilitated by information transfer from corresponding inspiration scans. Med. Phys. 43, 1312–1323 (2016)
CrossRef
Google Scholar
Feragen, A., et al.: Geodesic atlas-based labeling of anatomical trees: application and evaluation on airways extracted from CT. IEEE Trans. Med. Imaging 34(6), 1212–1226 (2015)
CrossRef
Google Scholar
Tschirren, J., Vidal, C., Baron, B., Raffy, P., Hoffman, E.A.: Fully automated labeling of sub-segmental airways in human airway trees. 46:PA758, September 2015
Google Scholar
Kerschnitzki, M., et al.: Architecture of the osteocyte network correlates with bone material quality. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 28(8), 1837–1845 (2013)
CrossRef
Google Scholar
Oyarzun Laura, C., et al. (eds.): CLIP 2015. LNCS, vol. 9401. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31808-0
Google Scholar
Sánchez, C., Esteban-Lansaque, A., Borras, A., Diez-Ferrer, M., Rosell, A., Gil, D.: Towards a videobronchoscopy localization system from airway centre tracking. In: 12th International Conference on Computer Vision Theory and Applications (VISAPP), pp. 352–359 (2017)
Google Scholar
Bronchoscopy International. What is Bronchoscopy Step-by-Step (2018). https://bronchoscopy.org
Ramírez, E., et al.: BronchoX: Bronchoscopy Exploration Software for Biopsy Intervention Planning. Healthcare Technology Letters (2018). https://doi.org/10.1007/978-3-319-31808-0
Google Scholar