Skip to main content

The Robustness of Musical Language: A Perspective from Complex Systems Theory

  • Chapter
  • First Online:
Biological Robustness

Part of the book series: History, Philosophy and Theory of the Life Sciences ((HPTL,volume 23))

Abstract

Within the field of systems theory, the term robustness has typically been applied to different contexts such as automatic control, genetic networks, metabolic pathways, morphogenesis, and ecosystems. All these systems involve either man-made machines, or living organisms. In this chapter, we will consider music as a peculiar complex system, involving both the realm of machines (the musical instrument) and the realm of biology (the player and the listeners). We will discuss some of the properties of music experience in terms of different attributes of robustness, focusing in particular on stability, the property enabling a complex system to maintain its function against a wide range of external and internal changes. We will provide examples of the human ability of isolating and maintaining stable information within the perceptual flow and despite changes in the external world that reach our perceptions, leading towards a characterization of robustness in music perception as referred both to the search for regularities and to the range of tolerance that perception admits to regularities. Finally, we will list four multiple interaction cycles that typically characterize music experience and that involve both internal properties of the organism and the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arons, B. (1992). A review of the cocktail party effect. Journal of the American Voice I/O Society, 12(7), 35–50.

    Google Scholar 

  • Bregman, A. S. (1990). Auditory scene analysis. Cambridge, MA: MIT Press.

    Google Scholar 

  • Brotons, M., & Koger, S. M. (2000). The impact of music therapy on language functioning in dementia. Journal of Music Therapy, 37, 183–195.

    Article  Google Scholar 

  • Cohen, A. J., Thorpe, L. A., & Trehub, S. E. (1987). Infants’ perception of musical relations in short transposed tone sequences. Canadian Journal of Psychology, 41, 33–47.

    Article  Google Scholar 

  • Cooke, D. (1959). The language of music. London: Oxford University Press.

    Google Scholar 

  • De Weerd, P. (2006). Perceptual filling-in: More than the eye can see. Progress in Brain Research, 154, 227–245.

    Article  Google Scholar 

  • Descartes, R. (1961). Compendium Musicae. Rome: American Institute of Musicology.

    Google Scholar 

  • Di Stefano, N., & Bertolaso, M. (2014). Understanding musical consonance and dissonance: Epistemological considerations from a systemic perspective. System, 2, 566–575.

    Article  Google Scholar 

  • Di Stefano, N., Focaroli, V., Giuliani, A., Formica, D., Taffoni, F., & Keller, F. (2017). A new research method to test auditory preferences in young listeners: Results from a consonance versus dissonance perception study. Psychology of Music, 45(5), 699–712.

    Article  Google Scholar 

  • Drake, C., & Bertrand, D. (2003). The quest for universals in temporal processing in music. In R. Zatorre (Ed.), The cognitive neurosciences of music. Oxford: Oxford University Press.

    Google Scholar 

  • Fernandez-Leon. (2014). Robustness as a relational phenomenon. Biological Reviews, 89, 552–567.

    Article  Google Scholar 

  • Gabrielsson. (2002). Emotion perceived and emotion felt: Same or different? Musicae Scientiae, 5(1), 123–147.

    Google Scholar 

  • Geretsegger, M., Elefant, C., Mössler, K. A., & Gold, C. (2014). Music therapy for people with autism spectrum disorder. The Cochrane Library, 6, CD004381.

    Google Scholar 

  • Handel, S. (1989). Listening: An introduction to the perception of auditory events. Cambridge, MA: MIT Press.

    Google Scholar 

  • Juslin, P. N. (2013). From every day emotions to aesthetic emotions: Towards a unified theory of musical emotions. Physics of Life Reviews, 10(3), 235–266.

    Article  Google Scholar 

  • Kavakami, et al. (2013). Sad music induces pleasant emotions. Frontiers in Psychology, 4, 311.

    Google Scholar 

  • Kitano, H. (2004). Biological robustness. Nature Reviews Genetics, 5(11), 826–837.

    Article  Google Scholar 

  • Komeilipoor, N., Rodger, M. W. M., Craig, C. M., & Cesari, P. (2015). (Dis-) Harmony in movement: Effects of musical dissonance on movement timing and form. Experimental Brain Research, 233, 1585–1595.

    Article  Google Scholar 

  • Kuyper, P. (1972). The cocktail party effect. Audiology, 11(5), 277–282.

    Article  Google Scholar 

  • Lagasse, A. B., & Thaut, M. H. (2013). The neurobiological foundation of neurologic music therapy. Music and Medicine, 5, 228–233.

    Article  Google Scholar 

  • Leman, M. (2007). Embodied music cognition and mediation technology. Cambridge, MA: MIT Press.

    Book  Google Scholar 

  • Leman, M., Nijs, L., & Di Stefano, N. (2017). On the role of the hand in the expression of music. In M. Bertolaso & N. Di Stefano (Eds.), The hand perception, cognition, and action (pp. 175–192). Cham: Springer.

    Google Scholar 

  • Oldfield, A. (2006). Interactive music therapy – A positive approach. London: Jessica Kingsley Publishers.

    Google Scholar 

  • Pankovski, T., & Pankovska, E. (2017). Emergence of the consonance pattern within synaptic weights of a neural network featuring Hebbian neuroplasticity. Biologically Inspired Cognitive Architectures, 22, 82–94.

    Article  Google Scholar 

  • Schellenberg, E. G., & Trehub, S. E. (1994). Frequency ratios and the discrimination of pure tone sequences. Perception & Psychophysics, 56, 472–478.

    Article  Google Scholar 

  • Schellenberg, E. G., & Trehub, S. E. (1996a). Children’s discrimination of melodic intervals. Developmental Psychology, 32, 1039–1050.

    Article  Google Scholar 

  • Schellenberg, E. G., & Trehub, S. E. (1996b). Natural musical intervals: Evidence from infant listeners. Psychological Science, 7, 272–277.

    Article  Google Scholar 

  • Schouten, J. F. (1938). The perception of subjective tones (Vol. 41, pp. 1086–1093). Amsterdam: K Akademie van Wetenshappen.

    Google Scholar 

  • Stainsby, T., & Cross, I. (2016). The perception of pitch. In Hallam, Cross, & Taut (Eds.), The Oxford handbook of music psychology. Oxford: Oxford University Press.

    Google Scholar 

  • Trainor, L. J., & Trehub, S. E. (1993a). Musical context effects in infants and adults: Key distance. Journal of Experimental Psychology. Human Perception and Performance, 19, 615–626.

    Article  Google Scholar 

  • Trainor, L. J., & Trehub, S. E. (1993b). What mediates infants’ and adults’ superior processing of the major over the augmented triad? Music Perception, 11, 185–196.

    Article  Google Scholar 

  • Trehub, S. E., & Thorpe, L. A. (1989). Infants’ perception of rhythm. Categorization of auditory sequences by temporal structure. Canadian Journal of Psychology, 43, 217–229.

    Article  Google Scholar 

  • Trulla, L. L., Di Stefano, N., & Giuliani, A. (2018). Computational approach to musical consonance and dissonance. Frontiers in Psychology, 9, 381.

    Article  Google Scholar 

  • von Ehrenfels, C. (1988). On Gestalt qualities. In B. Smith (Ed.), Foundations of Gestalt Theory (pp. 82–117). Wien: Philosophia Verlag.

    Google Scholar 

  • Warren, R. M. (2008). Auditory perception. An analysis and synthesis. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Windsor, L. (2009). Measurement and models of performance. In Hallam, Cross, & Thaut (Eds.), Oxford handbook of music psychology. Oxford: Oxford University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Di Stefano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Keller, F., Di Stefano, N. (2018). The Robustness of Musical Language: A Perspective from Complex Systems Theory. In: Bertolaso, M., Caianiello, S., Serrelli, E. (eds) Biological Robustness. History, Philosophy and Theory of the Life Sciences, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-01198-7_11

Download citation

Publish with us

Policies and ethics