Advertisement

Detecting Situations from Heterogeneous Internet of Things Data in Smart City Context

  • SK Alamgir HossainEmail author
  • Md. Anisur Rahman
  • M. Anwar Hossain
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 858)

Abstract

Internet of Things (IoT) offers a lot of benefits for building smart city today and tomorrow. In a smart city, large number of heterogeneous IoT devices are likely to be embedded, which will generate huge volume of data with different formats. Therefore, it is a challenge to address such IoT data heterogeneity and process them together to support decision makers with information of interest. This paper provides a framework to achieve this goal. Our experiment shows that the information obtained from raw IoT data provides situational awareness for the decision makers of smart city in a seamless fashion.

Keywords

Internet of things Smart city Situation awareness Big data analytics 

References

  1. 1.
    I.D.C. (IDC): Worldwide smart connected device shipments. Technical report, March (2012). http://www.idc.com/getdoc.jsp?containerId=prUS23398412
  2. 2.
    Schaffers, H., Komninos, N., Pallot, M., Trousse, B., Nilsson, M., Oliveira, A.: Smart cities and the future internet: towards cooperation frameworks for open innovation. In: The Future Internet Assembly, pp. 431–446. Springer (2011)Google Scholar
  3. 3.
    Cuff, D., Hansen, M., Kang, J.: Urban sensing: out of the woods. Commun. ACM 51(3), 24–33 (2008)CrossRefGoogle Scholar
  4. 4.
    Naphade, M., Banavar, G., Harrison, C., Paraszczak, J., Morris, R.: Smarter cities and their innovation challenges. Computer 44(6), 32–39 (2011)CrossRefGoogle Scholar
  5. 5.
    Vanelli, B., et al.: Internet of things data storage infrastructure in the cloud using NoSQL databases. IEEE Lat. Am. Trans. 15(4), 737–743 (2017)CrossRefGoogle Scholar
  6. 6.
    Ab Rahman, N.H., Cahyani, N.D.W., Choo, K.-K.R.: Cloud incident handling and forensic-by-design: cloud storage as a case study. Concurr. Comput. Pract. Exp. 29(14), e3868 (2017)CrossRefGoogle Scholar
  7. 7.
    Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the internet of things. In: Proceedings of the First Edition of the MCC Workshop on Mobile cloud computing, pp. 13–16. ACM (2012)Google Scholar
  8. 8.
    Fox, G.C., Kamburugamuve, S., Hartman, R.D.: Architecture and measured characteristics of a cloud based internet of things. In: 2012 International Conference on Collaboration Technologies and Systems (CTS), pp. 6–12. IEEE (2012)Google Scholar
  9. 9.
    Li, F., Vögler, M., Claeßens, M., Dustdar, S.: Efficient and scalable IoT service delivery on cloud. In: IEEE CLOUD, pp. 740–747 (2013)Google Scholar
  10. 10.
    ThingWorx.: Internet of things and M2M application platform. PTC, Technical report (2016). http://www.thingworx.com
  11. 11.
    SmartThings.: Smartthings open cloud. Samsung, Technical report (2016). https://www.smartthings.com/opencloud
  12. 12.
    Chakrabarty, S., Engels, D.W.: A secure IoT architecture for smart cities. In: 13th IEEE Annual Consumer Communications Networking Conference (CCNC), pp. 812–813. Jan (2016)Google Scholar
  13. 13.
    Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M.: Internet of things for smart cities. IEEE Internet Things J. 1(1), 22–32 (2014)CrossRefGoogle Scholar
  14. 14.
    Sanchez, L., et al.: Smartsantander: the meeting point between future internet research and experimentation and the smart cities. In: Future Network & Mobile Summit (FutureNetw) 2011, pp. 1–8. IEEE (2011)Google Scholar
  15. 15.
    Sakhardande, P., Hanagal, S., Kulkarni, S.: Design of disaster management system using IoT based interconnected network with smart city monitoring. In: 2016 International Conference on Internet of Things and Applications (IOTA), pp. 185–190. Jan (2016)Google Scholar
  16. 16.
    Wang, H., Tan, C.C., Li, Q.: Snoogle: a search engine for the physical world. In: The 27th Conference on Computer Communications (INFOCOM), pp. 1382–1390. IEEE (2008)Google Scholar
  17. 17.
    Boyd, S.: Alternating direction method of multipliers. In: Talk at NIPS Workshop on Optimization and Machine Learning (2011)Google Scholar
  18. 18.
    Fan, T., Chen, Y.: A scheme of data management in the internet of things. In: 2nd IEEE International Conference on Network Infrastructure and Digital Content, pp. 110–114. IEEE (2010)Google Scholar
  19. 19.
    Boehm, B.: Anchoring the software process. IEEE Softw. 13(4), 73–82 (1996)CrossRefGoogle Scholar
  20. 20.
    Gupta, A.: A big data for apache cassandra. J. Web Dev. Web Des. 1, 1–3 (2017)Google Scholar
  21. 21.
    Paik, H.-y., Lemos, A.L., Barukh, M.C., Benatallah, B., Natarajan, A.: Web services–soap and WSDL. In: Web Service Implementation and Composition Techniques, pp. 25–66. Springer (2017)Google Scholar
  22. 22.
    OASIS.: Mqtt 3.1.1 specification. Technical report. http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • SK Alamgir Hossain
    • 1
    Email author
  • Md. Anisur Rahman
    • 1
  • M. Anwar Hossain
    • 2
  1. 1.Computer Science and Engineering DisciplineKhulna UniversityKhulnaBangladesh
  2. 2.Department of Software Engineering CCISKing Saud UniversityRiyadhKingdom of Saudi Arabia

Personalised recommendations