Skip to main content

Autonomous Flight and Real-Time Tracking of Unmanned Aerial Vehicle

  • Conference paper
  • First Online:
Intelligent Computing (SAI 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 858))

Included in the following conference series:

Abstract

This study describes a system in which a micro UAV (quadrotor) was combined with a Kinect (v2), a Myo armband and an RGB camera. The quadrotor was connected to two PC clients or workstations and communicated through the Robot Operating System. The UAV moved to the marked targets in a cluttered environment without collision using the depth sensor. Recognises faces via the on-board camera based on the frame by frame basis and uses feature-based monocular simultaneous localisation and mapping (SLAM) in real-time. The SLAM tracks the pose of the quadrotor, simultaneously builds an incremental map of the surrounding environment to locate the UAV in that. The Myo armband was employed for teleoperation which commands the quadrotor to start/stop its journey or to begin a new task using hand gestures. The face recognition algorithm was developed using the Fisherface library and pre-trained database. Three missions were assigned to the UAV; to detect the marked area via Kinect’s depth sensor, fly towards and hover around the marked area, send the image/video streams to the ground station and to look for the person’s face in the crowded environment, match the name with the face owner and follow him/her within the distance of 2 m. Various organisations could use the proposed system for different purposes. It could be utilised for search and rescue, environmental monitoring, surveillance or inspection. It also could be used to identify a person in a collapsed building, in urban/suburban areas or to locate people with a particular need (alzheimer or dementia casualties which leads to wandering behaviour).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.thalmic.com/team/.

  2. 2.

    https://www.bitcraze.io/crazyflie-2/.

References

  1. Kim, H.J., Shim, D.H.: A flight control system for aerial robots: algorithms and experiments. Control. Eng. Pract. 11(12), 1389–1400 (2003)

    Article  Google Scholar 

  2. Glass, T.B.: A survey of usar healthcare practitioners’ requirements in order to operate effectively in the collapsed structure environment. Ph.D. dissertation (2016)

    Google Scholar 

  3. Giernacki, W., Skwierczyński, M., Witwicki, W., Wroński, P., Kozierski, P.: Crazyflie 2.0 quadrotor as a platform for research and education in robotics and control engineering. In: 2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 37–42. IEEE (2017)

    Google Scholar 

  4. Campos-Macías, L., Gómez-Gutiérrez, D., Aldana-López, R., de la Guardia, R., Parra-Vilchis, J.I.: A hybrid method for online trajectory planning of mobile robots in cluttered environments. IEEE Robot. Autom. Lett. 2(2), 935–942 (2017). http://ieeexplore.ieee.org/document/7822897/

    Article  Google Scholar 

  5. Tijmons, S., de Croon, G.C., Remes, B.D., De Wagter, C., Mulder, M.: Obstacle avoidance strategy using onboard stereo vision on a flapping wing MAV. IEEE Trans. Robot. (2017)

    Google Scholar 

  6. He, R., Bachrach, A., Achtelik, M., Geramifard, A., Gurdan, D., Prentice, S., Stumpf, J., Roy, N.: On the design and use of a micro air vehicle to track and avoid adversaries. Int. J. Robot. Res. 29(5), 529–546 (2010)

    Article  Google Scholar 

  7. Engel, J., Sturm, J., Cremers, D.: Scale-aware navigation of a low-cost quadrocopter with a monocular camera. Robot. Auton. Syst. 62(11), 1646–1656 (2014)

    Article  Google Scholar 

  8. Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: Visual odometry and mapping for autonomous flight using an RGB-D camera. In: Robotics Research, pp. 235–252. Springer (2017)

    Google Scholar 

  9. Bachrach, A., Prentice, S., He, R., Roy, N.: Range-robust autonomous navigation in GPS-denied environments. J. Field Robot. 28(5), 644–666 (2011)

    Article  Google Scholar 

  10. Jones, E.S., Soatto, S.: Visual-inertial navigation, mapping and localization: a scalable real-time causal approach. Int. J. Robot. Res. 30(4), 407–430 (2011)

    Article  Google Scholar 

  11. Meier, L., Tanskanen, P., Fraundorfer, F., Pollefeys, M.: PIXHAWK: a system for autonomous flight using onboard computer vision. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2992–2997. IEEE (2011)

    Google Scholar 

  12. Ahrens, S., Levine, D., Andrews, G., How, J.P.: Vision-based guidance and control of a hovering vehicle in unknown, GPS-denied environments. In: IEEE International Conference on Robotics and Automation, ICRA 2009, pp. 2643–2648. IEEE (2009)

    Google Scholar 

  13. Fairchild, C., Harman, T.L.: ROS Robotics By Example. Packt Publishing Ltd. (2016)

    Google Scholar 

  14. Kejriwal, N., Kumar, S., Shibata, T.: High performance loop closure detection using bag of word pairs. Robot. Auton. Syst. 77, 55–65 (2016)

    Article  Google Scholar 

  15. Yang, L., Zhang, L., Dong, H., Alelaiwi, A., El Saddik, A.: Evaluating and improving the depth accuracy of kinect for windows v2. IEEE Sens. J. 15(8), 4275–4285 (2015)

    Article  Google Scholar 

  16. Naidoo, Y., Stopforth, R., Bright, G.: Quad-rotor unmanned aerial vehicle helicopter modelling & control. Int. J. Adv. Robot. Syst. 8(4), 45 (2011)

    Article  Google Scholar 

  17. Galea, B., Kia, E., Aird, N., Kry, P.G.: Stippling with aerial robots. In: Proceedings of the Joint Symposium on Computational Aesthetics and Sketch Based Interfaces and Modeling and Non-Photorealistic Animation and Rendering. Eurographics Assoc., 125–134 (2016). http://www.cs.mcgill.ca/~kry/pubs/stippling/stippling.pdf

  18. Engel, J., Sturm, J., Cremers, D.: Camera-based navigation of a low-cost quadrocopter. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2815–2821. IEEE (2012)

    Google Scholar 

  19. Carrera, R., Khanna, R.: 3D scene reconstruction with a mobile camera. http://web.stanford.edu/class/cs231a/prevprojects2016/CS231AFinalPaper.pdf

  20. Richter, C., Bry, A., Roy, N.: Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments. In: Robotics Research, pp. 649–666. Springer (2016)

    Google Scholar 

  21. Bry, A., Richter, C., Bachrach, A., Roy, N.: Aggressive flight of fixed-wing and quadrotor aircraft in dense indoor environments. Int. J. Robot. Res. 34(7), 969–1002 (2015)

    Article  Google Scholar 

  22. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press (2003)

    Google Scholar 

  23. Bartels, R.H., Beatty, J.C., Barsky, B.A.: An Introduction to Splines for Use in Computer Graphics and Geometric Modeling. Morgan Kaufmann (1987)

    Google Scholar 

  24. Furgale, P., Rehder, J., Siegwart, R.: Unified temporal and spatial calibration for multi-sensor systems. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1280–1286. IEEE (2013)

    Google Scholar 

  25. Hughes, P.C.: Spacecraft Attitude Dynamics. Courier Corporation (2012)

    Google Scholar 

  26. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: An efficient alternative to sift or SURF. In: IEEE International Conference on Computer Vision (ICCV), pp. 2564–2571. IEEE (2011)

    Google Scholar 

  27. Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, ISMAR 2007, pp. 225–234. IEEE (2007)

    Google Scholar 

  28. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. Comput. Vis. ECCV 2010, 778–792 (2010)

    Google Scholar 

  29. Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: an open-source slam system for monocular, stereo, and RGB-D cameras. IEEE Trans. Robot. 33(5), 1255–1262 (2017)

    Article  Google Scholar 

  30. Sivic, J., Zisserman, A.: Video Google: a text retrieval approach to object matching in videos, p. 1470. In: Null. IEEE (2003)

    Google Scholar 

  31. Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2161–2168. IEEE (2006)

    Google Scholar 

  32. Gálvez-López, D., Tardos, J.D.: Bags of binary words for fast place recognition in image sequences. IEEE Trans. Robot. 28(5), 1188–1197 (2012)

    Article  Google Scholar 

  33. Mur-Artal, R., Tardós, J.D.: Fast relocalisation and loop closing in keyframe-based slam. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 846–853. IEEE (2014)

    Google Scholar 

  34. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  35. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  MathSciNet  Google Scholar 

  36. Wagner, P.: Face recognition with OpenCV. OpenCV 2.4. 9.0 Documentation (2012)

    Google Scholar 

  37. Lier, F., Hanheide, M., Natale, L., Schulz, S., Weisz, J., Wachsmuth, S., Wrede, S.: Towards automated system and experiment reproduction in robotics. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3298–3305. IEEE (2016)

    Google Scholar 

  38. Anifantis, D., Dermatas, E., Kokkinakis, G.: A neural network method for accurate face detection on arbitrary images. In: The 6th IEEE International Conference on Electronics, Circuits and Systems, 1999. Proceedings of ICECS 1999, vol. 1, pp. 109–112. IEEE (1999)

    Google Scholar 

  39. Turk, M.A., Pentland, A.P.: Face recognition using eigenfaces. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition: Proceedings CVPR 1991, pp. 586–591. IEEE (1991)

    Google Scholar 

  40. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)

    Article  Google Scholar 

  41. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Hum. Genet. 7(2), 179–188 (1936)

    Google Scholar 

  42. Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustmenta modern synthesis. In: International Workshop on Vision Algorithms, pp. 298–372. Springer (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan Muresan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Muresan, B., Sadeghi Esfahlani, S. (2019). Autonomous Flight and Real-Time Tracking of Unmanned Aerial Vehicle. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Intelligent Computing. SAI 2018. Advances in Intelligent Systems and Computing, vol 858. Springer, Cham. https://doi.org/10.1007/978-3-030-01174-1_73

Download citation

Publish with us

Policies and ethics