Skip to main content

X-Ray Scattering by Antiphase Ferroelectric Domain Walls in the Antiferroelectric Phase of the PbZr\(_{0.985}\)Ti\(_{0.015}\)O\(_3\)

  • Conference paper
  • First Online:
Internet of Things, Smart Spaces, and Next Generation Networks and Systems (NEW2AN 2018, ruSMART 2018)

Abstract

The results of the X-ray diffuse scattering (DS) measurements of the Zr-rich PbZrO\(_{3}\) - PbTiO\(_{3}\) solid solution PbZr\(_{0.985}\)Ti\(_{0.015}\)O\(_3\) (PZT1.5) are presented. Measurements were performed in zero electric field and in applied electric field E = 5 kV / cm. In the antiferroelectric phase diffuse scattering streaks around \(\varSigma \) superstructure peaks \((h+\frac{1}{4}~k+\frac{1}{4}~l)\) were found and interpreted as a scattering on ferroelectric antiphase domain walls. This conclusion is corroborated by the observation of a strong influence of the electric field on these streaks. Reported results are important for the prospective application of the antiferroelectrics as the basis for the high-density non-volatile memory devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roberts, S.: Dielectric properties of lead zirconate and barium-lead zirconate. J. Am. Ceram. Soc. 33(1946), 63–66 (1950)

    Article  Google Scholar 

  2. Shirane, G., Sawaguchi, E., Takagi, Y.: Dielectric properties of lead zirconate. Phys. Rev. 84(3), 476–481 (1951)

    Article  Google Scholar 

  3. Matthias, B.T., Wood, E.A.: Low temperature polymorphic transformation in WO\(_{3}\). Phys. Rev. 84(6), 1255–1255 (1951)

    Article  Google Scholar 

  4. Mason, W.P.: The elastic, piezoelectric, and dielectric constants of potassium dihydrogen phosphate and ammonium dihydrogen phosphate. Phys. Rev. 69(5–6), 173–194 (1946)

    Article  Google Scholar 

  5. Shirane, G., Hoshino, S.: Crystal structure of the ferroelectric phase in PbZrO\(_{3}\) containing Ba or Ti. Phys. Rev. 86(2), 248–249 (1952)

    Article  Google Scholar 

  6. Shirane, G., Suzuki, K., Takeda, A.: Phase transitions in solid solutions of PbZrO\(_{3}\) and PbTiO\(_{3}\) (II) X-ray study (1952)

    Google Scholar 

  7. Jaffe, B., Cook, W.J., Jaffe, J.: Piesoelectric Ceramics. Academic Press, London (1971)

    Google Scholar 

  8. Hao, X.: A review on the dielectric materials for high energy-storage application. J. Adv. Dielectr. 03(01), 1330001 (2013)

    Article  Google Scholar 

  9. Mischenko, A.S., Zhang, Q., Scott, J.F., Whatmore, R.W., Mathur, N.D.: Giant electrocaloric effect in PZT. Science 104(1), 9–13 (2014)

    Google Scholar 

  10. Glazkova-Swedberg, E., Cuozzo, J., Lisenkov, S., Ponomareva, I.: Electrocaloric effect in PbZrO\(_{3}\) thin films with antiferroelectric-ferroelectric phase competition. Comput. Mater. Sci. 129, 44–48 (2017)

    Article  Google Scholar 

  11. Tagantsev, A.K., Cross, L.E., Fousek, J.: Domains in Ferroic Crystals and Thin Films. Springer, New York (2010). https://doi.org/10.1007/978-1-4419-1417-0

    Book  Google Scholar 

  12. Jia, C.L., et al.: Direct observation of continous electric dipole rotation in flux-closure domains in FE PZT. 1420–1424 (2011). 2101

    Google Scholar 

  13. Wada, S., Kakemoto, H., Tsurumi, T.: Enhanced piezoelectric properties of piezoelectric single crystals by domain engineering. Mater. Trans. 45(2), 178–187 (2004)

    Article  Google Scholar 

  14. Rao, W.F., Wang, Y.U.: Domain wall broadening mechanism for domain size effect of enhanced piezoelectricity in crystallographically engineered ferroelectric single crystals. Appl. Phys. Lett. 90(4) (2007)

    Article  Google Scholar 

  15. Tagantsev, A.K., Courtens, E., Arzel, L.: Prediction of a low-temperature ferroelectric instability in antiphase domain boundaries of strontium titanate. Phys. Rev. B 64(22), 224107 (2001)

    Article  Google Scholar 

  16. Goncalves-Ferreira, L., Redfern, S.A.T., Artacho, E., Salje, E.K.H.: Ferrielectric twin walls in CaTiO3. Phys. Rev. Lett. 101(9), 1–4 (2008)

    Article  Google Scholar 

  17. Bousquet, E., et al.: Improper ferroelectricity in perovskite oxide artificial superlattices. Nature 452(7188), 732–736 (2008)

    Article  Google Scholar 

  18. Wei, X.-K., Tagantsev, A.K., Kvasov, A., Roleder, K., Jia, C., Setter, N.: Ferroelectric translational antiphase boundaries in nonpolar materials. Nature Communi. 5, 3031 (2014)

    Article  Google Scholar 

  19. Andreeva, N.V.V., et al.: Domain structures and correlated out-of-plane and in-plane polarization reorientations in Pb(Zr\(_{0.96}\)Ti\(_{0.04}\))O\(_{1}\) single crystal via piezoresponse force microscopy. AIP Adv. 6(9) (2016)

    Google Scholar 

  20. Bruce, A.D., Cowley, R.A.: Structural Phase Transitions. Taylor and Francis, London (1981)

    Book  Google Scholar 

  21. Leontiev, N.G., Smotrakov, V.G., Fesenko, O.E.: Phase diagram of PbZr\(_{1-x}\)Ti\(_{x}\)O\(_{3}\) at x \(<\) 0,1. Izv. Akad. Nauk SSSR, Neorg. Mater. 18(449) (1982)

    Google Scholar 

  22. COMSOL Multiphysics Reference Manual. COMSOL, Inc. www.comsol.com

  23. Udovenko, S.A., Chernyshov, D.Y., Andronikova, D.A., Filimonov, A.V., Vakhrushev, S.B.: The technique of studying X-Ray scattering over wide temperature range in an electric field. Phys. Solid State 60(5) (2018)

    Article  Google Scholar 

  24. Dyadkin, V., Pattison, P., Dmitriev, V., Chernyshov, D.: A new multipurpose diffractometer PILATUS@SNBL. J. Synchrotron Radiat. 23(3), 825–829 (2016)

    Article  Google Scholar 

Download references

Acknowledgement

We acknowledge N.G. Leontiev (AzovBlack Sea Engineering Institute, Don State Agrarian University) and I.N. Leontiev (Southern Federal University) for providing the single crystal of PZT. A.V. Filimonov and N.V. Ravi Kumar acknowledge the support of Russian Foundation for Basic Research (Grant No. 16-52-48016). S. Udovenko acknowledges the support of the Ministry of Science and Education of the Russian Federation, project no. 3.1150.2017/4.6. D. Andronikova acknowledges the support of Russian Foundation for Basic Research (Grant No. 16-29-14018) and the Russian President Scholarship No. SP-3762.2018.5

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergej Vakhrushev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vakhrushev, S., Andronikova, D.A., Chernyshov, D.Y., Filimonov, A.V., Udovenko, S.A., Kumar, N.V.R. (2018). X-Ray Scattering by Antiphase Ferroelectric Domain Walls in the Antiferroelectric Phase of the PbZr\(_{0.985}\)Ti\(_{0.015}\)O\(_3\). In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. NEW2AN ruSMART 2018 2018. Lecture Notes in Computer Science(), vol 11118. Springer, Cham. https://doi.org/10.1007/978-3-030-01168-0_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01168-0_63

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01167-3

  • Online ISBN: 978-3-030-01168-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics