Skip to main content

Features of the Development of Transceivers for Information and Communication Systems Considering the Distribution of Radar Operating Frequencies in the Frequency Range

  • Conference paper
  • First Online:
Internet of Things, Smart Spaces, and Next Generation Networks and Systems (NEW2AN 2018, ruSMART 2018)

Abstract

The influence of out-of-band emitters on the performance of information and communication systems (ICS) is estimated. The broadband and narrowband ICS are analyzed. A significant influence of radars on the characteristics of ICS is shown. The distribution density histogram of more than 900 types of radars in frequency range is obtained and described. The prospects for the operation of ICS in the millimeter range are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chenakin, A.: Frequency Synthesizers. Concept to Product. Artech House, Norwood (2011)

    Google Scholar 

  2. Ameri, H., Attaran, A., Moghavvemi, M.: Design an X-band frequency synthesizer. Microwaves RF 79, 98–103 (2010)

    Google Scholar 

  3. Davydov, V.V., Ermak, S.V., Karseev, A.U., Nepomnyashchaya, E.K., Petrov, A.A., Velichko, E.N.: Fiber-optic super-high-frequency signal transmission system for sea-based radar station. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) NEW2AN 2014. LNCS, vol. 8638, pp. 694–702. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10353-2_65

    Chapter  Google Scholar 

  4. Ermolaev, A.N., Krishpents, G.P., Davydov, V.V., Vysoczkiy, M.G.: Compensation of chromatic and polarization mode dispersion in fiber-optic communication lines in microwave signals transmittion. J. Phy. Conf. Ser. 741(1), 012171 (2016). https://doi.org/10.1088/1742-6596/741/1/012171

    Article  Google Scholar 

  5. Ryazantsev, L.B., Likhachev, V.P.: Assessment of range and radial velocity of objects of a broadband radar station under conditions of range cell migration. Meas. Tech. 60(11), 1158–1162 (2018). https://doi.org/10.1007/s11018-018-1334-4

    Article  Google Scholar 

  6. Tarasenko, M.Yu., Davydov, V.V., Lenets, V.A., Akulich, N.V., Yalunina, T.R.: Features of use direct and external modulation in fiber optical simulators of a false target for testing radar station. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART/NsCC -2017. LNCS, vol. 10531, pp. 227–232. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67380-6_21

    Chapter  Google Scholar 

  7. Streetly, M. (ed.): Jane’s Radar and Electronic Warfare Systems, 22nd ed. IHS Jane’s, London (2010)

    Google Scholar 

  8. Podstrigaev, A.S., Likhachev, V.P., Ryazantsev, L.B.: Technique for tuning microwave strip devices. Meas. Tech. 59(5), 547–550 (2016). https://doi.org/10.1007/s11018-016-1005-2

    Article  Google Scholar 

  9. Podstrigaev, A.S.: All-purpose adjuster for microwave microstrip devices. In: 24th International Crimean Conference on Microwave & Telecommunication Technology (CriMiCo), pp. 896–897 (2014). https://doi.org/10.1109/crmico.2014.6959682

  10. Bystrov, V.V., Likhachev, V.P., Ryazantsev, L.B.: Experimental check of the coherence of radiolocation signals from objects with nonlinear electrical properties. Meas. Tech. 57(9), 1073–1076 (2014). https://doi.org/10.1007/s11018-014-0582-1

    Article  Google Scholar 

  11. Koo, V.C., et al.: A new unmanned aerial vehicle synthetic aperture radar for environmental monitoring. Prog. Electromagnet. Res. 122, 245–268 (2012)

    Article  Google Scholar 

  12. González-Partida, J.-T., Almorox-González, P., Burgos-Garcia, M., Dorta-Naranjo, B.P.: SAR system for UAV operation with motion error compensation beyond the resolution cell. Sensors 8(5), 3384–3405 (2008)

    Article  Google Scholar 

  13. Giancarlo, M., Broggi, A., Cerri, P.: Vehicle and guard rail detection using radar and vision data fusion. IEEE Trans. Intell. Transp. Syst. 8(1), 95–105 (2007). https://doi.org/10.1109/TITS.2006.888597

    Article  Google Scholar 

  14. Viikari, V.V., Varpula, T., Kantanen, M.: Road-condition recognition using 24-GHz automotive radar. IEEE Trans. Intell. Transp. Syst. 10(4), 639–648 (2009). https://doi.org/10.1109/TITS.2009.2026307

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikita S. Myazin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Podstrigaev, A.S., Smolyakov, A.V., Davydov, V.V., Myazin, N.S., Slobodyan, M.G. (2018). Features of the Development of Transceivers for Information and Communication Systems Considering the Distribution of Radar Operating Frequencies in the Frequency Range. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. NEW2AN ruSMART 2018 2018. Lecture Notes in Computer Science(), vol 11118. Springer, Cham. https://doi.org/10.1007/978-3-030-01168-0_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01168-0_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01167-3

  • Online ISBN: 978-3-030-01168-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics