Skip to main content

A-MSDU Frame Aggregation Mechanism Efficiency for IEEE 802.11ac Network. The Optimal Number of Frames in A-MSDU Block

  • Conference paper
  • First Online:
Internet of Things, Smart Spaces, and Next Generation Networks and Systems (NEW2AN 2018, ruSMART 2018)

Abstract

This article discusses the effect of the A-MSDU frame aggregation mechanism on the efficiency of the IEEE 802.11 network. In order to define its main parameters as a function of the operation conditions the model of this mechanism is proposed. An analytical model is obtained for the probability of successful receipt of the code word as a function of bit error rate. An analytical model for the channel utilization efficiency as a function of bit error rate and number of frames in the A-MSDU block for the IEEE 802.11ac standard is also obtained. The proposed analytical models can be used to evaluate the network’s performance. The method of determining the optimal number of frames in the A-MSDU block is proposed in terms of maximum efficiency of channel resource usage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IEEE Std 802.11 – 2016. IEEE Standard for Information technology — Telecommunications and information exchange between systems. Local and metropolitan area networks — Specific requirements. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications (2016)

    Google Scholar 

  2. Paramonov, A., Hussain, O., Samouylov, K., Koucheryavy, A., Kirichek, R., Koucheryavy, Y.: Clustering optimization for Out-Of-Band D2D communications. Wirel. Commun. Mob. Comput. 2017, Article ID 6747052, 11 pages (2017). https://doi.org/10.1155/2017/6747052

    Article  Google Scholar 

  3. Makolkina, M., Vikulov, A., A. Paramonov: The augmented reality service provision in D2D network. In: Proceedings of 20th International Conference. Distributed Computer and Communication Networks (DCCN 2017) Moscow, Russia, September 25–29, pp. 281–290 (2019)

    Google Scholar 

  4. Ginzburg, B, et al.: Performance Analysis of A-MPDU and A-MSDU Aggregation in IEEE 802.11n (2007)

    Google Scholar 

  5. Gautam Bhanage: AMSDU vs AMPDU: A Brief Tutorial on WiFi Aggregation Support. Report number: GDB2017-004. arXiv:1704.07015 [cs.NI], April 2017

  6. Paramonov, A., Vikulov, A., Scherbakov, S.: Practical results of WLAN traffic analysis. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART/NsCC -2017. LNCS, vol. 10531, pp. 721–733. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67380-6_68

    Chapter  Google Scholar 

  7. Bianchi, G.: Performance analysis of the IEEE 802.11 DCF. IEEE J. Sel. Area Commun. 18(3), 535–547 (2000)

    Article  Google Scholar 

  8. Yazid, M., et al.: Performance Study of Frame Aggregation Mechanisms in the New Generation WiFi. VECoS (2016)

    Google Scholar 

  9. Butler, B.K.: Minimum distances of the QC-LDPC Codes in IEEE 802 Communication Standards. Arxiv.org https://arxiv.org/pdf/1602.02831.pdf. Accessed 05 May 2018

  10. Westcott, D.A., Coleman, D.D., Mackenzie, P., Miller, B.: CWAP certified wireless professional official study guide (PW-270). Wiley Publishing, Chichester (2011)

    Google Scholar 

  11. Bianchi, G.: IEEE 802.11—saturation throughput analysis. IEEE Commun. Lett. 2(12), 318–320 (1998)

    Article  Google Scholar 

  12. Daldoul, Y., Ahmed, T., Meddour, D.: IEEE 802.11n Aggregation Performance Study for the Multicast. IFIP Wireless Days (WD 2011), October 2011, Canada, pp. 1–6 (2011)

    Google Scholar 

  13. Kolap, J.: Frame aggregation mechanism for high-throughput 802.11n wlans. Int. J. Wirel. Mob. Netw. 4, 141–153 (2012)

    Article  Google Scholar 

  14. García, M.A., Santos, M., Villalón, J.: IEEE 802.11n MAC mechanisms for high throughput: a performance evaluation. In: ICNS 2011. The Seventh International Conference on Networking and Services (2011)

    Google Scholar 

  15. Bourawy, A., Alokap, T.: Evaluation of frame aggregation in gigabit WLANs. Int. J. Eng. Appl. Sci. (IJEAS), 4(4), April 2017. ISSN: 2394-3661

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Vikulov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vikulov, A., Paramonov, A. (2018). A-MSDU Frame Aggregation Mechanism Efficiency for IEEE 802.11ac Network. The Optimal Number of Frames in A-MSDU Block. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. NEW2AN ruSMART 2018 2018. Lecture Notes in Computer Science(), vol 11118. Springer, Cham. https://doi.org/10.1007/978-3-030-01168-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01168-0_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01167-3

  • Online ISBN: 978-3-030-01168-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics