Abstract
This paper presents a methodology for temporal logic verification of discrete-time stochastic systems. Our goal is to find a lower bound on the probability that a complex temporal property is satisfied by finite traces of the system. Desired temporal properties of the system are expressed using a fragment of linear temporal logic, called safe LTL over finite traces. We propose to use barrier certificates for computations of such lower bounds, which is computationally much more efficient than the existing discretization-based approaches. The new approach is discretization-free and does not suffer from the curse of dimensionality caused by discretizing state sets. The proposed approach relies on decomposing the negation of the specification into a union of sequential reachabilities and then using barrier certificates to compute upper bounds for these reachability probabilities. We demonstrate the effectiveness of the proposed approach on case studies with linear and polynomial dynamics.
This work was supported in part by the German Research Foundation (DFG) through the grant ZA 873/1-1 and the TUM International Graduate School of Science and Engineering (IGSSE).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abate, A., Katoen, J.P., Mereacre, A.: Quantitative automata model checking of autonomous stochastic hybrid systems. In: Proceedings of the 14th International Conference on Hybrid systems: Computation and Control, pp. 83–92. ACM (2011)
Ayala, A.I.M., Andersson, S.B., Belta, C.: Probabilistic control from time-bounded temporal logic specifications in dynamic environments. In: 2012 IEEE International Conference on Robotics and Automation, pp. 4705–4710 (2012)
Baier, C., Katoen, J.P., Larsen, K.G.: Principles of Model Checking. MIT press, Cambridge (2008)
De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on finite traces. In: International Joint Conference on Artificial Intelligence, vol. 13, pp. 854–860 (2013)
De Giacomo, G., Vardi, M.Y.: Synthesis for LTL and LDL on finite traces. In: International Joint Conference on Artificial Intelligence, vol. 15, pp. 1558–1564 (2015)
Dimitrova, R., Majumdar, R.: Deductive control synthesis for alternating-time logics. In: 2014 International Conference on Embedded Software (EMSOFT), pp. 1–10 (2014)
Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.: Spot 2.0 — a framework for LTL and \(\omega \)-automata manipulation. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 122–129. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46520-3_8
Henriksen, J.G., Jensen, J., Jørgensen, M., Klarlund, N., Paige, R., Rauhe, T., Sandholm, A.: Mona: monadic second-order logic in practice. In: Brinksma, E., Cleaveland, W.R., Larsen, K.G., Margaria, T., Steffen, B. (eds.) TACAS 1995. LNCS, vol. 1019, pp. 89–110. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60630-0_5
Huang, C., Chen, X., Lin, W., Yang, Z., Li, X.: Probabilistic safety verification of stochastic hybrid systems using barrier certificates. ACM Trans. Embed. Comput. Syst. 16(5s), 186 (2017)
Jagtap, P., Zamani, M.: QUEST: a tool for state-space quantization-free synthesis of symbolic controllers. In: Bertrand, N., Bortolussi, L. (eds.) QEST 2017. LNCS, vol. 10503, pp. 309–313. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66335-7_21
Klein, J., Baier, C.: Experiments with deterministic \(\omega \)-automata for formulas of linear temporal logic. Theor. Comput. Sci. 363(2), 182–195 (2006)
Kupferman, O., Vardi, M.: Model checking of safety properties. In: International Conference on Computer Aided Verification, pp. 172–183. Springer, Berlin (1999)
Kushner, H.J.: On the stability of stochastic dynamical systems. Proc. Natl. Acad. Sci. 53(1), 8–12 (1965)
Lahijanian, M., Andersson, S.B., Belta, C.: Formal verification and synthesis for discrete-time stochastic systems. IEEE Trans. Autom. Control 60(8), 2031–2045 (2015)
Lavaei, A., Soudjani, S., Zamani, M.: From dissipativity theory to compositional construction of finite Markov decision processes. In: Hybrid Systems: Computation and Control (HSCC), pp. 21–30. ACM, New York (2018)
Maity, D., Baras, J.S.: Motion planning in dynamic environments with bounded time temporal logic specifications. In: 2015 23rd Mediterranean Conference on Control and Automation, pp. 940–946 (2015)
Parrilo, P.A.: Semidefinite programming relaxations for semialgebraic problems. Math. Program. 96(2), 293–320 (2003)
Postoyan, R., Nesic, D.: Time-triggered control of nonlinear discrete-time systems. In: 2016 IEEE 55th Conference on Decision and Control, pp. 6814–6819 (2016)
Prajna, S., Jadbabaie, A., Pappas, G.J.: A framework for worst-case and stochastic safety verification using barrier certificates. IEEE Trans. Autom. Control 52(8), 1415–1428 (2007)
Prajna, S., Papachristodoulou, A., Parrilo, P.A.: Introducing SOSTOOLS: a general purpose sum of squares programming solver. In: Proceedings of the 41st IEEE Conference on Decision and Control, vol. 1, pp. 741–746 (2002). http://www.cds.caltech.edu/sostools/
Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Pearson Education, London (2003)
Saha, I., Ramaithitima, R., Kumar, V., Pappas, G.J., Seshia, S.A.: Automated composition of motion primitives for multi-robot systems from safe LTL specifications. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1525–1532 (2014)
Esmaeil Zadeh Soudjani, S., Abate, A.: Precise approximations of the probability distribution of a Markov process in time: an application to probabilistic invariance. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 547–561. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_45
Soudjani, S., Abate, A., Majumdar, R.: Dynamic Bayesian networks as formal abstractions of structured stochastic processes. In: 26th International Conference on Concurrency Theory, pp. 1–14. Dagstuhl Publishing, Madrid (2015)
Soudjani, S., Abate, A.: Adaptive and sequential gridding procedures for the abstraction and verification of stochastic processes. SIAM J. Appl. Dyn. Syst. 12(2), 921–956 (2013)
Soudjani, S., Gevaerts, C., Abate, A.: FAUST\(^2\): formal abstractions of uncountable-state stochastic processes. In: Baier, C., Tinelli, C. (eds.) Tools and Algorithms for the Construction and Analysis of Systems, pp. 272–286. Springer, Berlin (2015)
Steinhardt, J., Tedrake, R.: Finite-time regional verification of stochastic non-linear systems. Int. J. Robot. Res. 31(7), 901–923 (2012)
Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11(1–4), 625–653 (1999). http://sedumi.ie.lehigh.edu/
Tabuada, P.: Verification and Control of Hybrid Systems: A Symbolic Approach. Springer Science & Business Media, Berlin (2009)
Tkachev, I., Abate, A.: Formula-free finite abstractions for linear temporal verification of stochastic hybrid systems. In: Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control, pp. 283–292. ACM (2013)
Vincent, T.L., Yu, J.: Control of a chaotic system. Dyn. Control 1(1), 35–52 (1991)
Wisniewski, R., Bujorianu, M.L.: Stochastic safety analysis of stochastic hybrid systems. In: 2017 IEEE 56th Annual Conference on Decision and Control, pp. 2390–2395 (2017)
Wongpiromsarn, T., Topcu, U., Lamperski, A.: Automata theory meets barrier certificates: temporal logic verification of nonlinear systems. IEEE Trans. Autom. Control 61(11), 3344–3355 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Jagtap, P., Soudjani, S., Zamani, M. (2018). Temporal Logic Verification of Stochastic Systems Using Barrier Certificates. In: Lahiri, S., Wang, C. (eds) Automated Technology for Verification and Analysis. ATVA 2018. Lecture Notes in Computer Science(), vol 11138. Springer, Cham. https://doi.org/10.1007/978-3-030-01090-4_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-01090-4_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-01089-8
Online ISBN: 978-3-030-01090-4
eBook Packages: Computer ScienceComputer Science (R0)