Abstract
Social media platforms such as Twitter contain wealth of user-generated data and over time has become a virtual treasure trove of information for knowledge discovery with applications in healthcare, politics, social initiatives, to name a few. Despite the evident benefits of tweets exploration, there are numerous challenges associated with processing such data, given tweets specific characteristics. The study provides a brief of steps involved in manipulation Twitter data as well as offers the examples of the machine learning algorithms most commonly used in text analysis. It concludes with the case study on the Australian hay fever prediction with the application of the selected techniques described in the brief. It demonstrates an example of Twitter real-time analytics for heath condition surveillance with the use of interactive visualisations to assist knowledge discovery and findings dissemination. The results prove the potential of social media to play an important role in meaningful results extraction and guidance for decision makers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Twitter. https://about.twitter.com/company
Bruns, A., Stieglitz, S.: Towards more systematic twitter analysis: metrics for tweeting activities. Int. J. Soc. Res. Methodol. 16(2), 91–108 (2013)
Australian Institute of Health and Welfare. Allergic Rhinitis (‘Hay Fever’) in Australia (2016)
Sorensen, L.: User managed trust in social networking-comparing Facebook, Myspace and Linkedin. In: 1st International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology, Wireless VITAE 2009, pp. 427–431. IEEE (2009)
Liu, F., Xiong, L.: Survey on text clustering algorithm-research present situation of text clustering algorithm. In: 2011 IEEE 2nd International Conference on Software Engineering and Service Science (ICSESS), pp. 196–199. IEEE (2011)
Dai, Y., Kakkonen, T., Sutinen, E.: MinEDec: a decision-support model that combines text-mining technologies with two competitive intelligence analysis methods. Int. J. Comput. Inf. Syst. Ind. Manag. Appl. 3, 165–173 (2011)
Forman, G., Kirshenbaum, E.: Extremely fast text feature extraction for classification and indexing. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, pp. 1221–1230. ACM (2008)
Stavrianou, A., Brun, C., Silander, T., Roux, C.: NLP-based feature extraction for automated tweet classification. Interact. Data Min. Nat. Lang. Process. 145 (2014)
Zhao, P., Li, X., Wang, K.: Feature extraction from micro-blogs for comparison of products and services. In: Lin, X., Manolopoulos, Y., Srivastava, D., Huang, G. (eds.) WISE 2013. LNCS, vol. 8180, pp. 82–91. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41230-1_7
Shirbhate, A.G., Deshmukh, S.N.: Feature extraction for sentiment classification on twitter data. Int. J. Sci. Res. (IJSR), 2319–7064 (2016). ISSN (Online)
Saif, H., Fernández, M., He, Y., Alani, H.: On stopwords, filtering and data sparsity for sentiment analysis of twitter (2014)
Porter, M.F.: Snowball: a language for stemming algorithms (2001)
Yuan, L.: Improvement for the automatic part-of-speech tagging based on Hidden Markov Model. In: 2010 2nd International Conference on Signal Processing Systems (ICSPS), vol. 1, pp. V1–744. IEEE (2010)
Jadhao, H., Aghav, D.J., Vegiraju, A.: Semantic tool for analysing unstructured data. Int. J. Sci. Eng. Res. 3(8) (2012)
Strapparava, C., Valitutti, A., et al.: WordNet affect: an affective extension of WordNet. In: LREC, vol. 4, pp. 1083–1086. Citeseer (2004)
Esuli, A., Sebastiani, F.: SentiWordNet: a high-coverage lexical resource for opinion mining. Evaluation 17, 1–26 (2007)
Montañés, E., Fernández, J., DÃaz, I., Combarro, E.F., Ranilla, J.: Measures of rule quality for feature selection in text categorization. In: R. Berthold, M., Lenz, H.-J., Bradley, E., Kruse, R., Borgelt, C. (eds.) IDA 2003. LNCS, vol. 2810, pp. 589–598. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45231-7_54
Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005)
Fleuret, F.: Fast binary feature selection with conditional mutual information. J. Mach. Learn. Res. 5(Nov), 1531–1555 (2004)
Mihalcea, R., Corley, C., Strapparava, C.: Corpus-based and knowledge-based measures of text semantic similarity. In: AAAI, vol. 6, pp. 775–780 (2006)
Ramos, J., et al.: Using TF-IDF to determine word relevance in document queries. In: Proceedings of the First Instructional Conference on Machine Learning, vol. 242, pp. 133–142 (2003)
Lee, K., Agrawal, A., Choudhary, A.: Real-time disease surveillance using twitter data: demonstration on flu and cancer. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1474–1477. ACM (2013)
Barbosa, L., Feng, J.: Robust sentiment detection on twitter from biased and noisy data. In: Proceedings of the 23rd International Conference on Computational Linguistics: Posters, Association for Computational Linguistics, pp. 36–44 (2010)
Tumasjan, A., Sprenger, T.O., Sandner, P.G., Welpe, I.M.: Predicting elections with twitter: what 140 characters reveal about political sentiment. Icwsm 10(1), 178–185 (2010)
O’Connor, B., Balasubramanyan, R., Routledge, B.R., Smith, N.A.: From tweets to polls: linking text sentiment to public opinion time series. Icwsm 11(122–129), 1–2 (2010)
Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes twitter users: real-time event detection by social sensors. In: Proceedings of the 19th International Conference on World Wide Web, pp. 851–860. ACM (2010)
Chunara, R., Andrews, J.R., Brownstein, J.S.: Social and news media enable estimation of epidemiological patterns early in the 2010 Haitian Cholera outbreak. Am. J. Trop. Med. Hyg. 86(1), 39–45 (2012)
Petrović, S., Osborne, M., Lavrenko, V.: Streaming first story detection with application to twitter. In: Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Association for Computational Linguistics, pp. 181–189 (2010)
Jiang, H., Zhou, R., Zhang, L., Wang, H., Zhang, Y.: A topic model based on Poisson decomposition. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1489–1498. ACM (2017)
Huang, J., Peng, M., Wang, H., Cao, J., Gao, W., Zhang, X.: A probabilistic method for emerging topic tracking in microblog stream. World Wide Web 20(2), 325–350 (2017)
Peng, M., Xie, Q., Wang, H., Zhang, Y., Tian, G.: Bayesian sparse topical coding. IEEE Trans. Knowl. Data Eng. (2018)
Peng, M., et al.: Mining event-oriented topics in microblog stream with unsupervised multi-view hierarchical embedding. ACM Trans. Knowl. Discov. Data (TKDD) 12(3), 38 (2018)
Peng, M., et al.: Neural sparse topical coding. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), vol. 1, pp. 2332–2340 (2018)
Yao, W., He, J., Wang, H., Zhang, Y., Cao, J.: Collaborative topic ranking: Leveraging item meta-data for sparsity reduction. In: AAAI, pp. 374–380 (2015)
Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends® Inf. Retr. 2(1–2), 1–135 (2008)
Bollen, J., Mao, H., Zeng, X.: Twitter mood predicts the stock market. J. Comput. Sci. 2(1), 1–8 (2011)
Bollen, J., Mao, H., Pepe, A.: Modeling public mood and emotion: Twitter sentiment and socio-economic phenomena. Icwsm 11, 450–453 (2011)
Bruns, A., Burgess, J.E.: # Ausvotes: How twitter covered the 2010 Australian federal election. Commun. Polit. Cult. 44(2), 37–56 (2011)
Gaffney, D.: iranElection: quantifying online activism. In: Proceedings of the Web Science Conference WebSci10. Citeseer (2010)
Culotta, A.: Towards detecting influenza epidemics by analyzing twitter messages. In: Proceedings of the First Workshop on Social Media Analytics, pp. 115–122. ACM (2010)
de Quincey, E., Kostkova, P.: Early warning and outbreak detection using social networking websites: the potential of twitter. In: Kostkova, P. (ed.) eHealth 2009. LNICST, vol. 27, pp. 21–24. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11745-9_4
Bosley, J.C., et al.: Decoding twitter: Surveillance and trends for cardiac arrest and resuscitation communication. Resuscitation 84(2), 206–212 (2013)
Culotta, A.: Lightweight methods to estimate influenza rates and alcohol sales volume from twitter messages. Lang. Resour. Eval. 47(1), 217–238 (2013)
Cobb, N.K., Graham, A.L., Byron, M.J., Niaura, R.S., Abrams, D.B., Participants, W.: Online social networks and smoking cessation: a scientific research agenda. J. Med. Internet Res. 13(4) (2011)
Paul, M.J., Dredze, M.: Drug extraction from the web: Summarizing drug experiences with multi-dimensional topic models. In: Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 168–178 (2013)
Golder, S.A., Macy, M.W.: Diurnal and seasonal mood vary with work, sleep, and daylength across diverse cultures. Science 333(6051), 1878–1881 (2011)
Odlum, M., Yoon, S.: What can we learn about the ebola outbreak from tweets? Am. J. Infect. Control. 43(6), 563–571 (2015)
Paul, M.J., Dredze, M.: Discovering health topics in social media using topic models. PloS one 9(8), e103408 (2014)
Paul, M.J., Dredze, M.: You are what you tweet: analyzing twitter for public health. Icwsm 20, 265–272 (2011)
Allergic\_rhinitis. https://en.wikipedia.org/wiki/Allergic_rhinitis
Allergy\_cosmos. https://www.allergycosmos.co.uk/blog/why-is-my-hay-fever-worse-when-it-rains/
Silver, J.D., et al.: Seasonal asthma in Melbourne, Australia, and some observations on the occurrence of thunderstorm asthma and its predictability. PloS one 13(4), e0194929 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Subramani, S., Michalska, S., Wang, H., Whittaker, F., Heyward, B. (2018). Text Mining and Real-Time Analytics of Twitter Data: A Case Study of Australian Hay Fever Prediction. In: Siuly, S., Lee, I., Huang, Z., Zhou, R., Wang, H., Xiang, W. (eds) Health Information Science. HIS 2018. Lecture Notes in Computer Science(), vol 11148. Springer, Cham. https://doi.org/10.1007/978-3-030-01078-2_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-01078-2_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-01077-5
Online ISBN: 978-3-030-01078-2
eBook Packages: Computer ScienceComputer Science (R0)