Skip to main content

Application of Qualitative Methods for the Investigation and Numerical Analysis of Some Dissipative Nonlinear Physical Systems

  • Conference paper
  • First Online:
Advances in Intelligent Systems and Computing III (CSIT 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 871))

Included in the following conference series:

Abstract

The mathematical models of the oscillations for the important classes of the nonlinear physical systems with dissipation are considered in the paper. It is impossible to apply the asymptotic analytical methods to construct the solutions in the mathematical models of the dynamical processes in these systems. Consequently the qualitative approach is used, the solution existence and uniqueness is substantiated and estimated. The qualitative methods enable to use the corresponding specified numerical methods for the investigation of the mathematical model and solution construction. Basing on the numerical analysis and the fourth-order Runge-Kutta method there are analyzed some singularities of the dynamical processes in the considered systems classes. The effective combination of the theoretic and numerical approach allows to build the innovative procedure to analyze the mathematical models for the wide class of the nonlinear physical systems applied in the engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Erofeev, V.I., Kazhaev, V.V., Semerikova, N.P.: Waves in the rods. In: Dispersion, Dissipation, Non-linearity. Fizmatlit, Moscow (2002). [in Russian]

    Google Scholar 

  2. Mitropol’skii, Yu., Moiseenkov, B.I.: Asymptotic Solutions of Partial Differential Equations. Vyshcha shkola, Kyiv (1976). [in Russian]

    Google Scholar 

  3. Bogolyubov, N., Mitropol’skii, Yu.: Asymptotic Methods in the Theory of Nonlinear Oscillations. Nauka, Moscow (1974). [in Russian]

    MATH  Google Scholar 

  4. Kagadiy, T.S., Shporta, A.H.: The asymptotic method in problems of the linear and nonlinear elasticity theory. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 3, 76–81 (2015)

    Google Scholar 

  5. Mitropol’skii, Yu.: On construction of asymptotic solution of the perturbed Klein-Gordon equation. Ukr. Math. J. 7(9), 1378–1386 (1995)

    Article  MathSciNet  Google Scholar 

  6. Rusek, A., Czaban, A., Lis, M.: A mathematical model of a synchronous drive with protrude poles, an analysis using variational methods. Przeglad Elektrotechniczny 89(4), 106–108 (2013)

    Google Scholar 

  7. Filippov, A.A.: Oscillations of the Deformable Systems. Mashinostroenie, Moscow (1970). [in Russian]

    Google Scholar 

  8. Pukach, P.Ya., Kuzio, I.V.: Nonlinear transverse vibrations of semiinfinite cable with consideration paid to resistance. Naukovyi Visnyk Natsionalnoho Hirnychoho Universyte-tu 3, 82–86 (2013). [in Ukrainian]

    Google Scholar 

  9. Pukach, P., Ilkiv, V., Nytrebych, Z., Vovk, M.: On nonexistence of global in time solution for a mixed problem for a nonlinear evolution equation with memory generalizing the Voigt-Kelvin rheological model. Opuscula Math. 37(5), 735–753 (2017)

    Article  MathSciNet  Google Scholar 

  10. Il’kiv, V.S., Nytrebych, Z.M., Pukach, P.Y.: Boundary-value problems with integral conditions for a system of Lamé equations in the space of almost periodic functions. Electron. J. Differ. Equ. 2016(304), 1–12 (2016)

    MATH  Google Scholar 

  11. Bokalo, T.M., Buhrii, O.M.: Doubly nonlinear parabolic equations with variable exponents of nonlinearity. Ukr. Math. J. 63(5), 709–728 (2011)

    Article  MathSciNet  Google Scholar 

  12. Gu, R.J., Kuttler, K.L., Shillor, M.: Frictional wear of a thermoelastic beam. Journ. Math. Anal. And Appl. 242, 212–236 (2000)

    Article  MathSciNet  Google Scholar 

  13. Lenci, S., Rega, G.: Axial-transversal coupling in the free nonlinear vibrations of Timoshenko beams with arbitrary slenderness and axial boundary conditions. Proc. R. Soc. A 472, 1–20 (2016)

    Article  MathSciNet  Google Scholar 

  14. Denisova, T.S., Erofeev, V.I., Smirnov, P.A.: On the rate of ener-gy transfer by nonlinear waves in strings and beams. Vestnik Nizhe-gorodskogo Universiteta 6, 200–202 (2011). [in Russian]

    Google Scholar 

  15. Lenci, S., Clementi, F., Rega, G.: Comparing nonlinear free vibrations of Timoshenko beams with mechanical or geometric curvature definition. Procedia IUTAM 20, 34–41 (2017)

    Article  Google Scholar 

  16. Bayat, M., Pakara, I., Domairryb, G.: Recent developments of some asymptotic methods and their applications for nonlinear vibration equations in engineering problems: a review. Lat. Am. J. Solids Struct. 1, 1–93 (2012)

    Article  Google Scholar 

  17. Dutta, R.: Asymptotic Methods in Nonlinear dynamics. arXiv:1607.07835.v1[math-ph], pp. 1–20 26 July 2016

  18. Chen, L.Q.: Analysis and control of transverse vibrations of axially moving strings. Appl. Mech. Rev. 58(2), 91–116 (2005)

    Article  Google Scholar 

  19. M’Bagne, F., M’Bengue, F., Shillor, M.: Regularity result for the problem of vibrations of a nonlinear beam. Electron. J. Differ. Equ. 2008(27), 1–12 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Liu, Y., Xu, R.: A class of fourth order wave equations with dissipative and nonlinear strain terms. J. Differ. Equ. 224, 200–228 (2008)

    Article  MathSciNet  Google Scholar 

  21. Magrab, E.B.: Vibrations of Elastic Systems with Applications to MEMS and NEMS. Springer, New York (2012)

    Book  Google Scholar 

  22. Bondarenko, V.I., Samusya, V.I., Smolanov, S.N.: Mobile lifting units for wrecking works in pit shafts. Gornyi Zhurnal 5, 99–100 (2005). [in Russian]

    Google Scholar 

  23. Andrianov, I., Awrejcewicz, J.: Asymptotic approaches to strongly non-linear dynamical systems. Syst. Anal. Model. Simul. 43(3), 255–268 (2003)

    Article  MathSciNet  Google Scholar 

  24. Gendelman, O., Vakakis, A.F.: Transitions from localization to nonlocalization in strongly nonlinear damped oscillators. Chaos Solitons Fractals 11(10), 1535–1542 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petro Pukach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pukach, P., Il’kiv, V., Nytrebych, Z., Vovk, M., Pukach, P. (2019). Application of Qualitative Methods for the Investigation and Numerical Analysis of Some Dissipative Nonlinear Physical Systems. In: Shakhovska, N., Medykovskyy, M. (eds) Advances in Intelligent Systems and Computing III. CSIT 2018. Advances in Intelligent Systems and Computing, vol 871. Springer, Cham. https://doi.org/10.1007/978-3-030-01069-0_33

Download citation

Publish with us

Policies and ethics