Skip to main content

Biodiesel Production and Consumption: Life Cycle Assessment (LCA) Approach

  • Chapter
  • First Online:
Biodiesel

Abstract

Like all energy carriers including renewable energies, the production to combustion cycle of biodiesel should also be assessed from the sustainability point of view. Life cycle assessment (LCA) is a promising approach capable of assisting decision makers to find the environmental consequences of the existing or future biodiesel production plans. For instance, for different feedstocks, production technologies, downstream processes implemented, etc., an LCA of biodiesel production cycles could result in different recommendations ranging from agricultural practices to production and combustion stages. Despite the fact that an ISO standard is available for conducting LCA studies, there are still many challenging issues faced when performing LCA studies concerning biodiesel production and consumption. These challenges include the functional unit, the choice of system boundaries, the impact categories to be assessed, the treatment of land use change, and biogenic carbon. The present chapter provides a systematic overview of the above-mentioned topics with the aim of shedding light on various aspects of LCA of biodiesel production and consumption cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aghbashlo M, Tabatabaei M, Mohammadi P, Khoshnevisan B, Rajaeifar MA, Pakzad M (2017) Neat diesel beats waste-oriented biodiesel from the exergoeconomic and exergoenvironmental point of views. Energy Convers Manag 148:1–15

    Article  Google Scholar 

  • Altamirano CAA, Yokoyama L, de Medeiros JL, Araújo OdQF (2016) Ethylic or methylic route to soybean biodiesel? Tracking environmental answers through life cycle assessment. Appl Energy 184:1246–1263

    Article  Google Scholar 

  • Ashokkumar V, Salim MR, Salam Z, Sivakumar P, Chong CT, Elumalai S, Suresh V, Ani FN (2017) Production of liquid biofuels (biodiesel and bioethanol) from brown marine macroalgae Padina tetrastromatica. Energy Convers Manag 135:351–361

    Article  Google Scholar 

  • Baitz M (2017) Attributional life cycle assessment. In: Curran M (ed) Goal and scope definition in life cycle assessment. Springer, Dordrecht. The complete world of life cycle assessment. Springer, Dordrecht

    Google Scholar 

  • Baskar G, Aiswarya R (2016) Trends in catalytic production of biodiesel from various feedstocks. Renew Sustain Energy Rev 57:496–504

    Article  Google Scholar 

  • Bauen A, Chudziak C, Vad K, Watson P (2010) A causal descriptive approach to modelling the GHG emissions associated with the indirect land use impacts of biofuels. E4Tech, London

    Google Scholar 

  • Baumann H, Tillman A-M (2004) The Hitch Hiker’s guide to LCA. An orientation in life cycle assessment methodology and application. External Organization

    Google Scholar 

  • Ben Aoun W, Gabrielle B (2016) Life cycle assessment and land-use changes: effectiveness and limitations. In: Gnansounou E, Pandey A (eds) Life-cycle assessment of biorefineries. Elsevier

    Google Scholar 

  • Ben Aoun W, Gabrielle B, Gagnepain B (2013) The importance of land use change in the environmental balance of biofuels. In: Oilseeds and fats, crops and lipids, vol 1

    Article  Google Scholar 

  • Birkved M, Hauschild MZ (2006) PestLCI—a model for estimating field emissions of pesticides in agricultural LCA. Ecol Model 198:433–451

    Article  Google Scholar 

  • Boulay A-M, Bulle C, Bayart J-B, Deschênes L, Margni M (2011) Regional characterization of freshwater use in LCA: modeling direct impacts on human health. Environ Sci Technol 45:8948–8957

    Article  Google Scholar 

  • Brander M, Tipper R, Hutchison C, Davis G (2008) Technical paper: consequential and attributional approaches to LCA: a guide to policy makers with specific reference to greenhouse gas LCA of biofuels. Econometrica Press

    Google Scholar 

  • Brentrup F, Küsters J, Lammel J, Kuhlmann H (2000) Methods to estimate on-field nitrogen emissions from crop production as an input to LCA studies in the agricultural sector. Int J Life Cycle Assess 5:349–357

    Article  Google Scholar 

  • Cherubini F, Strømman AH (2011) Life cycle assessment of bioenergy systems: state of the art and future challenges. Biores Technol 102:437–451

    Article  Google Scholar 

  • Choo YM, Muhamad H, Hashim Z, Subramaniam V, Puah CW, Tan Y (2011) Determination of GHG contributions by subsystems in the oil palm supply chain using the LCA approach. Int J Life Cycle Assess 16:669–681

    Article  Google Scholar 

  • Curran MA (2007) Co-product and input allocation approaches for creating life cycle inventory data: a literature review. Int J Life Cycle Assess 12:65–78

    Google Scholar 

  • Curran MA (2017) Overview of goal and scope definition in life cycle assessment. Goal and scope definition in life cycle assessment. In: LCA compendium—The complete world of life cycle assessment. Springer, pp 1–62

    Google Scholar 

  • Dalgaard R, Schmidt J, Halberg N, Christensen P, Thrane M, Pengue WA (2008) LCA of soybean meal. Int J Life Cycle Assess 13:240

    Article  Google Scholar 

  • Demirbas A (2009) Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification. Energy Convers Manag 50:923–927

    Article  Google Scholar 

  • Demirbas MF (2011) Biofuels from algae for sustainable development. Appl Energy 88:3473–3480

    Article  Google Scholar 

  • Dufour J, Iribarren D (2012) Life cycle assessment of biodiesel production from free fatty acid-rich wastes. Renew Energy 38:155–162

    Article  Google Scholar 

  • Ekvall T, Finnveden G (2001) Allocation in ISO 14041—a critical review. J Clean Prod 9:197–208

    Article  Google Scholar 

  • Ekvall T, Weidema BP (2004) System boundaries and input data in consequential life cycle inventory analysis. Int J Life Cycle Assess 9:161–171

    Article  Google Scholar 

  • Elkington J (1997) Cannibals with forks. In: The triple bottom line of 21st century, vol 73

    Google Scholar 

  • Elshout PM, van Zelm R, Karuppiah R, Laurenzi IJ, Huijbregts MA (2014) A spatially explicit data-driven approach to assess the effect of agricultural land occupation on species groups. Int J Life Cycle Assess 19:758–769

    Article  Google Scholar 

  • Escobar N, Ribal J, Clemente G, Sanjuán N (2014) Consequential LCA of two alternative systems for biodiesel consumption in Spain, considering uncertainty. J Clean Prod 79:61–73

    Article  Google Scholar 

  • Finnveden G, Hauschild MZ, Ekvall T, Guinée J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in life cycle assessment. J Environ Manage 91:1–21

    Article  Google Scholar 

  • Fritz S, See L, Valin H (2013) Current issues and uncertainties in estimating global land availability for biofuel production. Taylor & Francis

    Google Scholar 

  • Georgogianni K, Kontominas M, Pomonis P, Avlonitis D, Gergis V (2008) Conventional and in situ transesterification of sunflower seed oil for the production of biodiesel. Fuel Process Technol 89:503–509

    Article  Google Scholar 

  • Ghobadian B, Rahimi H, Nikbakht A, Najafi G, Yusaf T (2009) Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network. Renew Energy 34:976–982

    Article  Google Scholar 

  • Gnansounou E, Panichelli L, Dauriat A, Villegas JD (2008) Accounting for indirect land-use changes in GHG balances of biofuels: review of current approaches

    Google Scholar 

  • Guinée J, Heijungs R (2017) Introduction to life cycle assessment. In: Sustainable supply chains. Springer, pp 15–41

    Google Scholar 

  • Guinée JB (2002) Handbook on life cycle assessment operational guide to the ISO standards. Int J Life Cycle Assess 7:311

    Article  Google Scholar 

  • Harris Z, Spake R, Taylor G (2015) Land use change to bioenergy: a meta-analysis of soil carbon and GHG emissions. Biomass Bioenergy 82:27–39

    Article  Google Scholar 

  • Hauschild MZ, Huijbregts MAJ (2015) Introducing life cycle impact assessment. In: Life cycle impact assessment. Springer, pp 1–16

    Google Scholar 

  • Hawkins TR, Singh B, Majeau-Bettez G, Strømman AH (2013) Comparative environmental life cycle assessment of conventional and electric vehicles. J Ind Ecol 17:53–64

    Article  Google Scholar 

  • Heijungs R, Guinée JB (2007) Allocation and ‘what-if’scenarios in life cycle assessment of waste management systems. Waste Manag 27:997–1005

    Article  Google Scholar 

  • Heijungs R, Wiloso EI (2014) Life cycle assessment of bioenergy systems. In: Wang L (ed) Sustainable bioenergy production, pp 99–114

    Chapter  Google Scholar 

  • Hodaifa G, Ochando-Pulido J, Rodriguez-Vives S, Martinez-Ferez A (2013) Optimization of continuous reactor at pilot scale for olive-oil mill wastewater treatment by Fenton-like process. Chem Eng J 220:117–124

    Article  Google Scholar 

  • Hosenuzzaman M, Rahim N, Selvaraj J, Hasanuzzaman M, Malek A, Nahar A (2015) Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation. Renew Sustain Energy Rev 41:284–297

    Article  Google Scholar 

  • Ibenholt K (2002) Materials flow analysis and economic modelling. In: Handbook of industrial ecology. Edward Elgar, Cheltenham, pp 177–184

    Google Scholar 

  • IPCC (2006) Guidelines for national greenhouse gas inventories, Agriculture, forestry and other land use, vol. 4. Intergovernmental Panel on Climate Change

    Google Scholar 

  • ISO14044 (2006) Environmental management. Life cycle assessment requirements and guidelines. ISO 14044 International Standard International Organization for Standardization

    Google Scholar 

  • ISO14045 (2012) Environmental management—eco-efficiency assessment of product systems—principles, requirements and guidelines. ISO 14045 International Standard International Organization for Standardization

    Google Scholar 

  • ISO14046 (2014). Environmental management—water footprint—principles, requirements and guidelines. ISO 14046 International Standard International Organization for Standardization

    Google Scholar 

  • Jiaqiang E, Liu T, Yang W, Li J, Gong J, Deng Y (2016) Effects of fatty acid methyl esters proportion on combustion and emission characteristics of a biodiesel fueled diesel engine. Energy Convers Manag 117:410–419

    Article  Google Scholar 

  • Jørgensen A, Bikker P, Herrmann IT (2012) Assessing the greenhouse gas emissions from poultry fat biodiesel. J Clean Prod 24:85–91

    Article  Google Scholar 

  • Khoshnevisan B, Rafiee S, Tabatabaei M, Ghanavati H, Mohtasebi SS, Rahimi V, Shafiei M, Angelidaki I, Karimi K (2017) Life cycle assessment of castor-based biorefinery: a well to wheel LCA. Int J Life Cycle Assess 1–18

    Google Scholar 

  • Kim S, Dale BE (2011) Indirect land use change for biofuels: testing predictions and improving analytical methodologies. Biomass Bioenergy 35:3235–3240

    Article  Google Scholar 

  • Kumara AS, Maheswarb D, Reddyc KVK (2009) Comparison of diesel engine performance and emissions from neat and transesterified cotton seed oil. Jordan J Mech Ind Eng 3

    Google Scholar 

  • Lee RA, Lavoie J-M (2013) From first-to third-generation biofuels: challenges of producing a commodity from a biomass of increasing complexity. Anim Front 3:6–11

    Article  Google Scholar 

  • Lee W-J, Liu Y-C, Mwangi FK, Chen W-H, Lin S-L, Fukushima Y, Liao C-N, Wang L-C (2011) Assessment of energy performance and air pollutant emissions in a diesel engine generator fueled with water-containing ethanol–biodiesel–diesel blend of fuels. Energy 36:5591–5599

    Article  Google Scholar 

  • Liew WL, Kassim MA, Muda K, Loh SK, Affam AC (2015) Conventional methods and emerging wastewater polishing technologies for palm oil mill effluent treatment: a review. J Environ Manag 149:222–235

    Article  Google Scholar 

  • Lim S, Lee KT (2011) Parallel production of biodiesel and bioethanol in palm-oil-based biorefineries: life cycle assessment on the energy and greenhouse gases emissions. Biofuels Bioprod Biorefin 5:132–150

    Article  Google Scholar 

  • Lim SL, Wu TY, Clarke C (2014) Treatment and biotransformation of highly polluted agro-industrial wastewater from a palm oil mill into vermicompost using earthworms. J Agric Food Chem 62:691–698

    Article  Google Scholar 

  • Lin J, Babbitt CW, Trabold TA (2013) Life cycle assessment integrated with thermodynamic analysis of bio-fuel options for solid oxide fuel cells. Biores Technol 128:495–504

    Article  Google Scholar 

  • Ma F, Hanna MA (1999) Biodiesel production: a review. Biores Technol 70:1–15

    Article  Google Scholar 

  • Malça J, Freire F (2011) Life-cycle studies of biodiesel in Europe: a review addressing the variability of results and modeling issues. Renew Sustain Energy Rev 15:338–351

    Article  Google Scholar 

  • Martin B (2017) Attributional life cycle assessment. In: Curran MA (ed) Goal and scope definition in life cycle assessment. LCA compendium—The complete world of life cycle assessment. Springer, pp 123–143

    Google Scholar 

  • Mohammadi P, Nikbakht AM, Tabatabaei M, Farhadi K, Mohebbi A (2012) Experimental investigation of performance and emission characteristics of DI diesel engine fueled with polymer waste dissolved in biodiesel-blended diesel fuel. Energy 46:596–605

    Article  Google Scholar 

  • Morais TG, Teixeira RF, Domingos T (2016) Regionalization of agri-food life cycle assessment: a review of studies in Portugal and recommendations for the future. Int J Life Cycle Assess 21:875–884

    Article  Google Scholar 

  • Moreno AO, Dorantes L, Galíndez J, Guzmán RI (2003) Effect of different extraction methods on fatty acids, volatile compounds, and physical and chemical properties of avocado (Persea americana Mill.) oil. J Agric Food Chem 51:2216–2221

    Article  Google Scholar 

  • Motasemi F, Ani FN (2012) A review on microwave-assisted production of biodiesel. Renew Sustain Energy Rev 16:4719–4733

    Article  Google Scholar 

  • Mutel CL, Hellweg S (2009) Regionalized life cycle assessment: computational methodology and application to inventory databases. Environ Sci Technol 43:5797–5803

    Article  Google Scholar 

  • Nemecek T, Schnetzer J, Reinhard J (2016) Updated and harmonised greenhouse gas emissions for crop inventories. Int J Life Cycle Assess 21:1361–1378

    Article  Google Scholar 

  • Nicoletti G, Arcuri N, Nicoletti G, Bruno R (2015) A technical and environmental comparison between hydrogen and some fossil fuels. Energy Convers Manag 89:205–213

    Article  Google Scholar 

  • Overmars KP, Stehfest E, Ros JP, Prins AG (2011) Indirect land use change emissions related to EU biofuel consumption: an analysis based on historical data. Environ Sci Policy 14:248–257

    Article  Google Scholar 

  • Panichelli L, Dauriat A, Gnansounou E (2009) Life cycle assessment of soybean-based biodiesel in Argentina for export. Int J Life Cycle Assess 14:144–159

    Article  Google Scholar 

  • Plevin RJ, Beckman J, Golub AA, Witcover J, O’Hare M (2015) Carbon accounting and economic model uncertainty of emissions from biofuels-induced land use change. Environ Sci Technol 49:2656–2664

    Article  Google Scholar 

  • Prox M, Curran MA (2017) Consequential life cycle assessment. In: Curran MA (ed) Goal and scope definition in life cycle assessment. LCA compendium—The complete world of life cycle assessment. Springer, pp 145–160

    Google Scholar 

  • Rajaeifar MA, Abdi R, Tabatabaei M (2017a) Expanded polystyrene waste application for improving biodiesel environmental performance parameters from life cycle assessment point of view. Renew Sustain Energy Rev 74:278–298

    Article  Google Scholar 

  • Rajaeifar MA, Akram A, Ghobadian B, Rafiee S, Heidari MD (2014) Energy-economic life cycle assessment (LCA) and greenhouse gas emissions analysis of olive oil production in Iran. Energy 66:139–149

    Article  Google Scholar 

  • Rajaeifar MA, Akram A, Ghobadian B, Rafiee S, Heijungs R, Tabatabaei M (2016) Environmental impact assessment of olive pomace oil biodiesel production and consumption: a comparative lifecycle assessment. Energy 106:87–102

    Article  Google Scholar 

  • Rajaeifar MA, Ghobadian B, Davoud Heidari M, Fayyazi E (2013) Energy consumption and greenhouse gas emissions of biodiesel production from rapeseed in Iran. J Renew Sustain Energy 5:063134

    Article  Google Scholar 

  • Rajaeifar MA, Tabatabaei M, Abdi R, Latifi AM, Saberi F, Askari M, Zenouzi A, Ghorbani M (2017b) Attributional and consequential environmental assessment of using waste cooking oil-and poultry fat-based biodiesel blends in urban buses: a real-world operation condition study. Biofuel Res J 4:638–653

    Article  Google Scholar 

  • Reijnders L, Huijbregts M (2008) Biogenic greenhouse gas emissions linked to the life cycles of biodiesel derived from European rapeseed and Brazilian soybeans. J Clean Prod 16:1943–1948

    Article  Google Scholar 

  • Reinhard J, Zah R (2011) Consequential life cycle assessment of the environmental impacts of an increased rapemethylester (RME) production in Switzerland. Biomass Bioenergy 35:2361–2373

    Article  Google Scholar 

  • Sáez-Bastante J, Ortega-Román C, Pinzi S, Lara-Raya F, Leiva-Candia D, Dorado M (2015) Ultrasound-assisted biodiesel production from Camelina sativa oil. Biores Technol 185:116–124

    Article  Google Scholar 

  • Salaa O, Saxa D, Lesliea H (2009) Biodiversity consequences of increased biofuel production. In: Howarth RW, Bringezu S (eds) Environmental consequences and interactions with changing land use. Proceedings of the scientific committee on problems of the environment (scope) international biofuels project rapid assessment, Gummersbach Germany, Cornell University, Ithaca NY, USA

    Google Scholar 

  • Sander K, Murthy GS (2010) Life cycle analysis of algae biodiesel. Int J Life Cycle Assess 15:704–714

    Article  Google Scholar 

  • Schmidt J (2007) Life cycle assessment of rapeseed oil and palm oil. Thesis, Part 3: Life cycle inventory of rapeseed oil and palm oil. Department of Development and Planning, Aalborg University, Aalborg

    Google Scholar 

  • Schmidt JH (2010) Comparative life cycle assessment of rapeseed oil and palm oil. Int J Life Cycle Assess 15:183–197

    Article  Google Scholar 

  • Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu T-H (2008) Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238–1240

    Article  Google Scholar 

  • Seppälä J, Posch M, Johansson M, Hettelingh J-P (2006) Country-dependent characterisation factors for acidification and terrestrial eutrophication based on accumulated exceedance as an impact category indicator (14 pp). Int J Life Cycle Assess 11:403–416

    Article  Google Scholar 

  • Shah S, Sharma A, Gupta M (2005) Extraction of oil from Jatropha curcas L. seed kernels by combination of ultrasonication and aqueous enzymatic oil extraction. Biores Technol 96:121–123

    Article  Google Scholar 

  • Sheehan J, Camobreco V, Duffield J, Graboski M, Shapouri H (1998) Life cycle inventory of biodiesel and petroleum diesel for use in an urban bus. Final report. National Renewable Energy Lab, Golden, CO (US)

    Google Scholar 

  • Singh A, Olsen SI, Nigam PS (2011) A viable technology to generate third-generation biofuel. J Chem Technol Biotechnol 86:1349–1353

    Article  Google Scholar 

  • Singh A, Olsen SI, Pant D (2013) Importance of life cycle assessment of renewable energy sources. In: Life cycle assessment of renewable energy sources. Springer, pp1–11

    Google Scholar 

  • Sousa VM, Luz SM, Caldeira-Pires A, Machado FS, Silveira CM (2017) Life cycle assessment of biodiesel production from beef tallow in Brazil. Int J Life Cycle Assess 22:1837–1850

    Article  Google Scholar 

  • Stojković IJ, Stamenković OS, Povrenović DS, Veljković VB (2014) Purification technologies for crude biodiesel obtained by alkali-catalyzed transesterification. Renew Sustain Energy Rev 32:1–15

    Article  Google Scholar 

  • Styles D, Jones MB (2007) Energy crops in Ireland: quantifying the potential life-cycle greenhouse gas reductions of energy-crop electricity. Biomass Bioenergy 31:759–772

    Article  Google Scholar 

  • Thomassen MA, Dalgaard R, Heijungs R, De Boer I (2008) Attributional and consequential LCA of milk production. Int J Life Cycle Assess 13:339–349

    Article  Google Scholar 

  • Tran D-T, Chang J-S, Lee D-J (2017) Recent insights into continuous-flow biodiesel production via catalytic and non-catalytic transesterification processes. Appl Energy 185:376–409

    Article  Google Scholar 

  • UNCED (1992) Report of the united nation conference on environment and development

    Google Scholar 

  • van Dam J, Junginger M, Faaij AP (2010) From the global efforts on certification of bioenergy towards an integrated approach based on sustainable land use planning. Renew Sustain Energy Rev 14:2445–2472

    Article  Google Scholar 

  • Van Zutphen J, Wijbrans R (2012) LCA GHG emissions in production and combustion of Malaysian palm oil biodiesel. J Oil Palm Environ Health (JOPEH) 2

    Google Scholar 

  • Verones F, Saner D, Pfister S, Baisero D, Rondinini C, Hellweg S (2013) Effects of consumptive water use on biodiversity in wetlands of international importance. Environ Sci Technol 47:12248–12257

    Article  Google Scholar 

  • Watson R, Noble I, Bolin B, Ravindranath NH, Verardo D, Andrasko K, Apps M, Brown S, Farquhar G, Goldberg D (2000) Summary for policymakers: land use, land-use change, and forestry

    Google Scholar 

  • Weidema B, Wenzel H, Petersen C, Hansen K (2004) The product, functional unit and reference flows in LCA. Environ News 70:1–46

    Google Scholar 

  • Wiloso EI, Heijungs R (2013) Key issues in conducting life cycle assessment of bio-based renewable energy sources. In: Life cycle assessment of renewable energy sources. Springer, pp 13–36

    Google Scholar 

  • Wolf M-A, Chomkhamsri K, Brandao M, Pant R, Ardente F, Pennington DW, Manfredi S, de Camillis C, Goralczyk M (2010). ILCD handbook-general guide for life cycle assessment-detailed guidance

    Google Scholar 

  • Wu M, Wu Y, Wang M (2008) Mobility chains analysis of technologies for passenger cars and light duty vehicles fueled with biofuels: application of the Greet model to project the role of biomass in America’s energy future (RBAEF) project. Argonne National Laboratory (ANL)

    Google Scholar 

  • Xue X, Collinge WO, Shrake SO, Bilec MM, Landis AE (2012) Regional life cycle assessment of soybean derived biodiesel for transportation fleets. Energy Policy 48:295–303

    Article  Google Scholar 

  • Yu N, Xing D, Li W, Yang Y, Li Z, Li Y, Ren N (2017) Electricity and methane production from soybean edible oil refinery wastewater using microbial electrochemical systems. Int J Hydrogen Energy 42:96–102

    Article  Google Scholar 

  • Zamagni A, Guinée J, Heijungs R, Masoni P, Raggi A (2012) Lights and shadows in consequential LCA. Int J Life Cycle Assess 17:904–918

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Ali Rajaeifar or Meisam Tabatabaei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajaeifar, M.A., Tabatabaei, M., Aghbashlo, M., Hemayati, S.S., Heijungs, R. (2019). Biodiesel Production and Consumption: Life Cycle Assessment (LCA) Approach. In: Tabatabaei, M., Aghbashlo, M. (eds) Biodiesel. Biofuel and Biorefinery Technologies, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-030-00985-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00985-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00984-7

  • Online ISBN: 978-3-030-00985-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics