Abstract
A general problem of any deformable image registration method for change assessment is to find a good balance between computing a precise match and keeping locally differences. In this work we present the rigid lens concept dealing with this issue. The rigid lens is based on locally rigid approximation of locally precise deformations and can be used for interactive viewing and visualization of changes as well as for automatic change detection. We demonstrate the rigid lens in the context of oncological workup of thorax-abdomen CT follow-up scans and evaluate the concept for change assessment based on a study with 1492 manually annotated lesion in scans from more than 400 patients.
Keywords
- Change assessment
- Image registration
- Local rigidity
This is a preview of subscription content, access via your institution.
Buying options




References
Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-D point sets. IEEE Trans. Pattern Anal. Mach. Intell. 5, 698–700 (1987)
Brown, L.G.: A survey of image registration techniques. ACM Computi. Surv. 24(4), 325–376 (1992)
Dzyubachyk, O.: Comparative exploration of whole-body MR through locally rigid transforms. Int. J. Comput. Assist. Radiol. Surg. 8(4), 635–47 (2013)
Eggert, D.W., Lorusso, A., Fisher, R.B.: Estimating 3-D rigid body transformations: a comparison of four major algorithms. Mach. Vis. Appl. 9(5–6), 272–290 (1997)
Goshtasby, A.A.: Image Registration: Principles, Tools and Methods. Springer, London (2012). https://doi.org/10.1007/978-1-4471-2458-0
Haber, E., Heldmann, S., Modersitzki, J.: A computational framework for image-based constrained registration. Linear Algebr. Appl. 431(3–4), 459–470 (2009)
König, L., Derksen, A., Papenberg, N., Haas, B.: Deformable image registration for adaptive radiotherapy with guaranteed local rigidity constraints. Radiat. Oncol. 11(1), 122 (2016)
Loeckx, D., Maes, F., Vandermeulen, D., Suetens, P.: Nonrigid image registration using free-form deformations with a local rigidity constraint. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 639–646. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30135-6_78
Modersitzki, J.: Numerical Methods for Image Registration. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2004)
Modersitzki, J.: Image registration with local rigidity constraints. In: Horsch, A., Deserno, T.M., Handels, H., Meinzer, H.P., Tolxdorff, T. (eds.) Bildverarbeitung für die Medizin 2007, pp. 444–448. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71091-2_89
Modersitzki, J.: FLIRT with rigidity - image registration with a local non-rigidity penalty. Int. J. Comput. Vis. 76(2), 153–163 (2008)
Modersitzki, J.: FAIR: flexible algorithms for image registration, vol. 6. SIAM, Philadelphia (2009)
Reaungamornrat, S., Wang, A., Uneri, A., Otake, Y., Khanna, A., Siewerdsen, J.: Deformable image registration with local rigidity constraints for cone-beam CT-guided spine surgery. Phys. Med. Biol. 59(14), 3761 (2014)
Ruthotto, L., Hodneland, E., Modersitzki, J.: Registration of dynamic contrast enhanced MRI with local rigidity constraint. In: Dawant, B.M., Christensen, G.E., Fitzpatrick, J.M., Rueckert, D. (eds.) WBIR 2012. LNCS, vol. 7359, pp. 190–198. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31340-0_20
Schönemann, P.H.: A generalized solution of the orthogonal procrustes problem. Psychometrika 31(1), 1–10 (1966)
Sotiras, A., Davatzikos, C., Paragios, N.: Deformable medical image registration: a survey. IEEE Trans. Med. Imaging 32(7), 1153–1190 (2013)
Staring, M., Klein, S., Pluim, J.P.W.: Evaluation of a rigidity penalty term for nonrigid registration. In: Bartoli, A., Navab, N., Lepetit, V. (eds.) Workshop on Image Registration in Deformable Environments, pp. 41–50, September 2006
Staring, M., Klein, S., Pluim, J.P.W.: Nonrigid registration using a rigidity constraint. In: Reinhardt, J.M., Pluim, J.P.W. (eds.) Medical Imaging 2006: Image Processing. Proceedings of the SPIE, vol. 6144, pp. 355–364, March 2006
Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13, 376–380 (1991)
Wahba, G.: A least squares estimate of satellite attitude. SIAM Rev. 7(3), 409–409 (1965)
Zitová, B., Flusser, J.: Image registartion methods: a survey. Image Vision Comput. 21, 977–1000 (2003)
Acknowledgment
This research was supported by the AMI (Automation in Medical Imaging) project under the ICON program of the Fraunhofer Society, Germany. We gratefully acknowledge Bram van Ginneken and Colin Jacobs from the Diagnostic Image Analysis Group of Radboud University Medical Center, Nijmegen, the Netherlands for providing us data and for their value input in joint discussions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Jäckle, S., Heldmann, S. (2018). Rigid Lens – Locally Rigid Approximations of Deformable Registration for Change Assessment in Thorax-Abdomen CT Follow-Up Scans. In: , et al. Image Analysis for Moving Organ, Breast, and Thoracic Images. RAMBO BIA TIA 2018 2018 2018. Lecture Notes in Computer Science(), vol 11040. Springer, Cham. https://doi.org/10.1007/978-3-030-00946-5_27
Download citation
DOI: https://doi.org/10.1007/978-3-030-00946-5_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-00945-8
Online ISBN: 978-3-030-00946-5
eBook Packages: Computer ScienceComputer Science (R0)