Skip to main content

Rigid Lens – Locally Rigid Approximations of Deformable Registration for Change Assessment in Thorax-Abdomen CT Follow-Up Scans

Part of the Lecture Notes in Computer Science book series (LNIP,volume 11040)

Abstract

A general problem of any deformable image registration method for change assessment is to find a good balance between computing a precise match and keeping locally differences. In this work we present the rigid lens concept dealing with this issue. The rigid lens is based on locally rigid approximation of locally precise deformations and can be used for interactive viewing and visualization of changes as well as for automatic change detection. We demonstrate the rigid lens in the context of oncological workup of thorax-abdomen CT follow-up scans and evaluate the concept for change assessment based on a study with 1492 manually annotated lesion in scans from more than 400 patients.

Keywords

  • Change assessment
  • Image registration
  • Local rigidity

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-00946-5_27
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-00946-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-D point sets. IEEE Trans. Pattern Anal. Mach. Intell. 5, 698–700 (1987)

    CrossRef  Google Scholar 

  2. Brown, L.G.: A survey of image registration techniques. ACM Computi. Surv. 24(4), 325–376 (1992)

    CrossRef  Google Scholar 

  3. Dzyubachyk, O.: Comparative exploration of whole-body MR through locally rigid transforms. Int. J. Comput. Assist. Radiol. Surg. 8(4), 635–47 (2013)

    CrossRef  Google Scholar 

  4. Eggert, D.W., Lorusso, A., Fisher, R.B.: Estimating 3-D rigid body transformations: a comparison of four major algorithms. Mach. Vis. Appl. 9(5–6), 272–290 (1997)

    CrossRef  Google Scholar 

  5. Goshtasby, A.A.: Image Registration: Principles, Tools and Methods. Springer, London (2012). https://doi.org/10.1007/978-1-4471-2458-0

    CrossRef  MATH  Google Scholar 

  6. Haber, E., Heldmann, S., Modersitzki, J.: A computational framework for image-based constrained registration. Linear Algebr. Appl. 431(3–4), 459–470 (2009)

    CrossRef  MathSciNet  Google Scholar 

  7. König, L., Derksen, A., Papenberg, N., Haas, B.: Deformable image registration for adaptive radiotherapy with guaranteed local rigidity constraints. Radiat. Oncol. 11(1), 122 (2016)

    CrossRef  Google Scholar 

  8. Loeckx, D., Maes, F., Vandermeulen, D., Suetens, P.: Nonrigid image registration using free-form deformations with a local rigidity constraint. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 639–646. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30135-6_78

    CrossRef  Google Scholar 

  9. Modersitzki, J.: Numerical Methods for Image Registration. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  10. Modersitzki, J.: Image registration with local rigidity constraints. In: Horsch, A., Deserno, T.M., Handels, H., Meinzer, H.P., Tolxdorff, T. (eds.) Bildverarbeitung für die Medizin 2007, pp. 444–448. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71091-2_89

    CrossRef  Google Scholar 

  11. Modersitzki, J.: FLIRT with rigidity - image registration with a local non-rigidity penalty. Int. J. Comput. Vis. 76(2), 153–163 (2008)

    CrossRef  Google Scholar 

  12. Modersitzki, J.: FAIR: flexible algorithms for image registration, vol. 6. SIAM, Philadelphia (2009)

    CrossRef  Google Scholar 

  13. Reaungamornrat, S., Wang, A., Uneri, A., Otake, Y., Khanna, A., Siewerdsen, J.: Deformable image registration with local rigidity constraints for cone-beam CT-guided spine surgery. Phys. Med. Biol. 59(14), 3761 (2014)

    CrossRef  Google Scholar 

  14. Ruthotto, L., Hodneland, E., Modersitzki, J.: Registration of dynamic contrast enhanced MRI with local rigidity constraint. In: Dawant, B.M., Christensen, G.E., Fitzpatrick, J.M., Rueckert, D. (eds.) WBIR 2012. LNCS, vol. 7359, pp. 190–198. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31340-0_20

    CrossRef  Google Scholar 

  15. Schönemann, P.H.: A generalized solution of the orthogonal procrustes problem. Psychometrika 31(1), 1–10 (1966)

    CrossRef  MathSciNet  Google Scholar 

  16. Sotiras, A., Davatzikos, C., Paragios, N.: Deformable medical image registration: a survey. IEEE Trans. Med. Imaging 32(7), 1153–1190 (2013)

    CrossRef  Google Scholar 

  17. Staring, M., Klein, S., Pluim, J.P.W.: Evaluation of a rigidity penalty term for nonrigid registration. In: Bartoli, A., Navab, N., Lepetit, V. (eds.) Workshop on Image Registration in Deformable Environments, pp. 41–50, September 2006

    Google Scholar 

  18. Staring, M., Klein, S., Pluim, J.P.W.: Nonrigid registration using a rigidity constraint. In: Reinhardt, J.M., Pluim, J.P.W. (eds.) Medical Imaging 2006: Image Processing. Proceedings of the SPIE, vol. 6144, pp. 355–364, March 2006

    Google Scholar 

  19. Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13, 376–380 (1991)

    CrossRef  Google Scholar 

  20. Wahba, G.: A least squares estimate of satellite attitude. SIAM Rev. 7(3), 409–409 (1965)

    CrossRef  Google Scholar 

  21. Zitová, B., Flusser, J.: Image registartion methods: a survey. Image Vision Comput. 21, 977–1000 (2003)

    CrossRef  Google Scholar 

Download references

Acknowledgment

This research was supported by the AMI (Automation in Medical Imaging) project under the ICON program of the Fraunhofer Society, Germany. We gratefully acknowledge Bram van Ginneken and Colin Jacobs from the Diagnostic Image Analysis Group of Radboud University Medical Center, Nijmegen, the Netherlands for providing us data and for their value input in joint discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonja Jäckle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Jäckle, S., Heldmann, S. (2018). Rigid Lens – Locally Rigid Approximations of Deformable Registration for Change Assessment in Thorax-Abdomen CT Follow-Up Scans. In: , et al. Image Analysis for Moving Organ, Breast, and Thoracic Images. RAMBO BIA TIA 2018 2018 2018. Lecture Notes in Computer Science(), vol 11040. Springer, Cham. https://doi.org/10.1007/978-3-030-00946-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00946-5_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00945-8

  • Online ISBN: 978-3-030-00946-5

  • eBook Packages: Computer ScienceComputer Science (R0)