Skip to main content

3D Anisotropic Hybrid Network: Transferring Convolutional Features from 2D Images to 3D Anisotropic Volumes

Part of the Lecture Notes in Computer Science book series (LNIP,volume 11071)

Abstract

While deep convolutional neural networks (CNN) have been successfully applied to 2D image analysis, it is still challenging to apply them to 3D medical images, especially when the within-slice resolution is much higher than the between-slice resolution. We propose a 3D Anisotropic Hybrid Network (AH-Net) that transfers convolutional features learned from 2D images to 3D anisotropic volumes. Such a transfer inherits the desired strong generalization capability for within-slice information while naturally exploiting between-slice information for more effective modelling. We experiment with the proposed 3D AH-Net on two different medical image analysis tasks, namely lesion detection from a Digital Breast Tomosynthesis volume, and liver and liver tumor segmentation from a Computed Tomography volume and obtain state-of-the-art results.

D. Xu—Equal contribution.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-00934-2_94
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-00934-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   129.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

References

  1. Chen, J., Yang, L., Zhang, Y., Alber, M.S., Chen, D.Z.: Combining fully convolutional and recurrent neural networks for 3D biomedical image segmentation. In: NIPS (2016)

    Google Scholar 

  2. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. ArXiv eprints arXiv:1606.06650 (2016)

  3. Ghesu, F.C., Georgescu, B., Grbic, S., Maier, A.K., Hornegger, J., Comaniciu, D.: Robust multi-scale anatomical landmark detection in incomplete 3D-CT data. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 194–202. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_23

    CrossRef  Google Scholar 

  4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of CVPR, pp. 770–778 (2016)

    Google Scholar 

  5. Huang, G., Liu, Z., Weinberger, K.Q., van der Maaten, L.: Densely Connected Convolutional Networks. ArXiv eprints arXiv:1608.06993 (2016)

  6. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. ArXiv eprints arXiv:1412.6980 (2014)

  7. Lee, K., Zung, J., Li, P., Jain, V., Seung, H.S.: Superhuman Accuracy on the SNEMI3D Connectomics Challenge. ArXiv e-prints arXiv:1706.00120 (2017)

  8. Li, X., Chen, H., Qi, X., Dou, Q., Fu, C.W., Heng, P.A.: H-DenseUNet: Hybrid Densely Connected UNet for Liver and Liver Tumor Segmentation from CT Volumes. ArXiv e-prints arXiv:1709.07330 (2017)

  9. Liu, F., Zhou, Z., Jang, H., Samsonov, A., Zhao, G., Kijowski, R.: Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal MR imaging. Magn. Reson. Med. (2017)

    Google Scholar 

  10. Peng, C., Zhang, X., Yu, G., Luo, G., Sun, J.: Large Kernel Matters - Improve Semantic Segmentation by Global Convolutional Network. ArXiv eprints arXiv:1703.02719 (2017)

  11. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation. ArXiv eprints arXiv:1505.04597 (2015)

    Google Scholar 

  12. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. IJCV 115(3), 211–252 (2015)

    CrossRef  MathSciNet  Google Scholar 

  13. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid Scene Parsing Network. ArXiv eprints arXiv:1612.01105 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siqi Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Liu, S. et al. (2018). 3D Anisotropic Hybrid Network: Transferring Convolutional Features from 2D Images to 3D Anisotropic Volumes. In: Frangi, A., Schnabel, J., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2018. MICCAI 2018. Lecture Notes in Computer Science(), vol 11071. Springer, Cham. https://doi.org/10.1007/978-3-030-00934-2_94

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00934-2_94

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00933-5

  • Online ISBN: 978-3-030-00934-2

  • eBook Packages: Computer ScienceComputer Science (R0)