Advertisement

A Riemannian Framework for Longitudinal Analysis of Resting-State Functional Connectivity

  • Qingyu ZhaoEmail author
  • Dongjin Kwon
  • Kilian M. Pohl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11072)

Abstract

Even though the number of longitudinal resting-state-fMRI studies is increasing, accurately characterizing the changes in functional connectivity across visits is a largely unexplored topic. To improve characterization, we design a Riemannian framework that represents the functional connectivity pattern of a subject at a visit as a point on a Riemannian manifold. Geodesic regression across the ‘sample’ points of a subject on that manifold then defines the longitudinal trajectory of their connectivity pattern. To identify group differences specific to regions of interest (ROI), we map the resulting trajectories of all subjects to a common tangent space via the Lie group action. We account for the uncertainty in choosing the common tangent space by proposing a test procedure based on the theory of latent p-values. Unlike existing methods, our proposed approach identifies sex differences across 246 subjects, each of them being characterized by three rs-fMRI scans.

Notes

Acknowledgement

This research was supported in part by NIH grants U24AA021697-06, AA005965, AA013521, AA017168.

References

  1. 1.
    Odish, O., et al.: Longitudinal resting state fMRI analysis in healthy controls and premanifest Huntington’s disease gene carriers: a three-year follow-up study. Hum. Brain Mapp. 36(1), 110–119 (2015)CrossRefGoogle Scholar
  2. 2.
    van der Horn, H., et al.: The default mode network as a biomarker of persistent complaints after mild traumatic brain injury: a longitudinal functional magnetic resonance imaging study. J. Neurotrauma 34(23), 3262–3269 (2017)CrossRefGoogle Scholar
  3. 3.
    Beckmann, C., Mackay, C., Filippini, N., Smith, S.: Group comparison of resting-state FMRI data using multi-subject ICA and dual regression. OHBM (2009)Google Scholar
  4. 4.
    Varoquaux, G., Baronnet, F., Kleinschmidt, A., Fillard, P., Thirion, B.: Detection of brain functional-connectivity difference in post-stroke patients using group-level covariance modeling. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 200–208. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15705-9_25CrossRefGoogle Scholar
  5. 5.
    Pennec, X., Fillard, P., Ayache, N.: A Riemannian framework for tensor computing. IJCV 66(1), 41–66 (2006)CrossRefGoogle Scholar
  6. 6.
    Hong, Y., Singh, N., Kwitt, R., Niethammer, M.: Group testing for longitudinal data. In: Ourselin, S., Alexander, D.C., Westin, C.-F., Cardoso, M.J. (eds.) IPMI 2015. LNCS, vol. 9123, pp. 139–151. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19992-4_11CrossRefGoogle Scholar
  7. 7.
    Fletcher, P.T.: Geodesic regression and the theory of least squares on Riemannian manifolds. IJCV 105(2), 171–185 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kim, H.J., Adluru, N., Suri, H., Vemuri, B.C., Johnson, S.C., Singh, V.: Riemannian nonlinear mixed effects models: analyzing longitudinal deformations in neuroimaging. In: CVPR, pp. 172–181 (2017)Google Scholar
  9. 9.
    Ng, B., Dressler, M., Varoquaux, G., Poline, J.B., Greicius, M., Thirion, B.: Transport on Riemannian manifold for functional connectivity-based classification. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8674, pp. 405–412. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10470-6_51CrossRefGoogle Scholar
  10. 10.
    Campbell, K.M., Fletcher, P.T.: Efficient parallel transport in the group of diffeomorphisms via reduction to the lie algebra. In: Cardoso, M.J. (ed.) GRAIL/MFCA/MICGen -2017. LNCS, vol. 10551, pp. 186–198. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-67675-3_17CrossRefGoogle Scholar
  11. 11.
    Thompson, E.A., Geyer, C.J.: Fuzzy p-values in latent variable problems. Biometrika 94(1), 49–60 (2007)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Erhardt, E., Allen, E., Wei, Y., Eichele, T., Calhoun, V.: SimTB, a simulation toolbox for fMRI data under a model of spatiotemporal separability. NeuroImage 59(4), 4160–4167 (2012)CrossRefGoogle Scholar
  13. 13.
    Ferreira, R., Xavier, J., Costeira, J.P., Barroso, V.: Newton method for Riemannian centroid computation in naturally reductive homogeneous spaces. In: ICASSP (2006)Google Scholar
  14. 14.
    Müller-Oehring, E., et al.: Influences of age, sex, and moderate alcohol drinking on the intrinsic functional architecture of adolescent brains. Cereb. Cortex 28(3), 1049–1063 (2018)CrossRefGoogle Scholar
  15. 15.
    Craddock, R., James, G., Holtzheimer, P., Hu, X., Mayberg, H.: A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum. Brain Mapp. 33(8), 1914–1928 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Psychiatry and Behavioral SciencesStanford UniversityStanfordUSA
  2. 2.Center of Health Sciences, SRI InternationalMenlo ParkUSA

Personalised recommendations