Arsigny, V., Commowick, O., Pennec, X., Ayache, N.: A log-euclidean framework for statistics on diffeomorphisms. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 924–931. Springer, Heidelberg (2006). https://doi.org/10.1007/11866565_113
CrossRef
Google Scholar
Ashburner, J., et al.: A fast diffeomorphic image registration algorithm. Neuroimage 38(1), 95–113 (2007)
CrossRef
Google Scholar
Avants, B.B., et al.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12(1), 26–41 (2008)
CrossRef
Google Scholar
Bajcsy, R., Kovacic, S.: Multiresolution elastic matching. Comput. Vis. Graph. Image Process. 46, 1–21 (1989)
CrossRef
Google Scholar
Balakrishnan, G., et al.: An unsupervised learning model for deformable medical image registration. arXiv:1802.02604 (2018)
Beg, M.F., et al.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61, 139–157 (2005)
CrossRef
Google Scholar
Dagley, A., et al.: Harvard aging brain study: dataset and accessibility. NeuroImage 144, 255–258 (2015)
CrossRef
Google Scholar
Dalca, A.V., Bobu, A., Rost, N.S., Golland, P.: Patch-based discrete registration of clinical brain images. In: Wu, G., et al. (eds.) Patch-MI 2016. LNCS, vol. 9993, pp. 60–67. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47118-1_8
CrossRef
Google Scholar
de Vos, B.D., et al.: End-to-end unsupervised deformable image registration with a convolutional neural network. In: DLMIA, pp. 204–212 (2017)
Google Scholar
Di Martino, A., et al.: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19(6), 659–667 (2014)
CrossRef
Google Scholar
Fischl, B.: Freesurfer. Neuroimage 62(2), 774–781 (2012)
CrossRef
Google Scholar
Glocker, B., et al.: Dense image registration through MRFs and efficient linear programming. Med. Image Anal. 12(6), 731–741 (2008)
CrossRef
Google Scholar
Gollub, R.L., et al.: The mcic collection: a shared repository of multi-modal, multi-site brain image data from a clinical investigation of schizophrenia. Neuroinformatics 11(3), 367–388 (2013)
CrossRef
Google Scholar
Holmes, A.J., et al.: Brain genomics superstruct project initial data release with structural, functional, and behavioral measures. Sci. Data 2 (2015)
Google Scholar
Jaderberg, M., et al.: Spatial transformer networks. In: NIPS, pp. 2017–2025 (2015)
Google Scholar
Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: ICLR (2014)
Google Scholar
Klein, A., et al.: Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage 46(3), 786–802 (2009)
CrossRef
Google Scholar
Li, H., Fan, H.: Non-rigid image registration using fully convolutional networks with deep self-supervision. arXiv preprint arXiv:1709.00799 (2017)
Marcus, D.S., et al.: Open access series of imaging studies (oasis): cross-sectional mri data in young, middle aged, nondemented, and demented older adults. J. Cogn. Neurosci. 19(9), 1498–1507 (2007)
CrossRef
Google Scholar
Marek, K., et al.: The parkinson progression marker initiative (PPMI). Prog. Neurobiol. 95(4), 629–635 (2011)
CrossRef
Google Scholar
Milham, M.P., et al.: The adhd-200 consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience. Front. Sys. Neurosci. 6, 62 (2012)
Google Scholar
Mueller, S.G., et al.: Ways toward an early diagnosis in Alzheimer’s disease: the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Alzheimer’s Dement. 1(1), 55–66 (2005)
CrossRef
Google Scholar
Rohé, M.-M., Datar, M., Heimann, T., Sermesant, M., Pennec, X.: SVF-Net: learning deformable image registration using shape matching. In: Descoteaux, M., et al. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 266–274. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_31
CrossRef
Google Scholar
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
CrossRef
Google Scholar
Rueckert, D., et al.: Nonrigid registration using free-form deformation: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)
CrossRef
Google Scholar
Sokooti, H., et al.: Nonrigid image registration using multi-scale 3D convolutional neural networks. In: Descoteaux, M., et al. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 232–239. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_27
CrossRef
Google Scholar
Thirion, J.P.: Image matching as a diffusion process: an analogy with maxwell’s demons. Med. Image Anal. 2(3), 243–260 (1998)
CrossRef
Google Scholar
Yang, X., et al.: Quicksilver: Fast predictive image registration-a deep learning approach. NeuroImage 158, 378–396 (2017)
CrossRef
Google Scholar
Zhang, M., et al.: Frequency diffeomorphisms for efficient image registration. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 559–570. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_44
CrossRef
Google Scholar