Gur, Y., Moradi, M., Bulu, H., Guo, Y., Compas, C., Syeda-Mahmood, T.: Towards an efficient way of building annotated medical image collections for big data studies. In: Cardoso, M.J., et al. (eds.) LABELS/CVII/STENT -2017. LNCS, vol. 10552, pp. 87–95. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67534-3_10
CrossRef
Google Scholar
Radosavovic, I., Dollár, P., Girshick, R., Gkioxari, G., He, K.: Data distillation: Towards omni-supervised learning. arXiv preprint arXiv:1712.04440 (2017)
Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)
Bucila, C., Caruana, R., Niculescu-Mizil, A.: Model compression: making big, slow models practical. In: Proceedings of the 12th International Conference on Knowledge Discovery and Data Mining (KDD 2006) (2006)
Google Scholar
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR (2014)
Google Scholar
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988. IEEE (2017)
Google Scholar
Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: Learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49
CrossRef
Google Scholar
Sofka, M., Zhang, J., Good, S., Zhou, S.K., Comaniciu, D.: Automatic detection and measurement of structures in fetal head ultrasound volumes using sequential estimation and integrated detection network (IDN). IEEE TMI 33(5), 1054–1070 (2014)
Google Scholar
Huang, R., Xie, W., Noble, J.A.: VP-Nets: efficient automatic localization of key brain structures in 3D fetal neurosonography. Med. Image Anal. 47, 127–139 (2018)
CrossRef
Google Scholar
Papageorghiou, A.T.: International standards for fetal growth based on serial ultrasound measurements: the fetal growth longitudinal study of the intergrowth-21st project. Lancet 384(9946), 869–879 (2014)
CrossRef
Google Scholar