Skip to main content

Omni-Supervised Learning: Scaling Up to Large Unlabelled Medical Datasets

Part of the Lecture Notes in Computer Science book series (LNIP,volume 11070)

Abstract

Two major bottlenecks in increasing algorithmic performance in the field of medical imaging analysis are the typically limited size of datasets and the shortage of expert labels for large datasets. This paper investigates approaches to overcome the latter via omni-supervised learning: a special case of semi-supervised learning. Our approach seeks to exploit a small annotated dataset and iteratively increase model performance by scaling up to refine the model using a large set of unlabelled data. By fusing predictions of perturbed inputs, the method generates new training annotations without human intervention. We demonstrate the effectiveness of the proposed framework to localize multiple structures in a 3D US dataset of 4044 fetal brain volumes with an initial expert annotation of just 200 volumes (5% in total) in training. Results show that structure localization error was reduced from 2.07 ± 1.65 mm to 1.76 ± 1.35 mm on the hold-out validation set.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-00928-1_65
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-00928-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   129.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. Gur, Y., Moradi, M., Bulu, H., Guo, Y., Compas, C., Syeda-Mahmood, T.: Towards an efficient way of building annotated medical image collections for big data studies. In: Cardoso, M.J., et al. (eds.) LABELS/CVII/STENT -2017. LNCS, vol. 10552, pp. 87–95. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67534-3_10

    CrossRef  Google Scholar 

  2. Radosavovic, I., Dollár, P., Girshick, R., Gkioxari, G., He, K.: Data distillation: Towards omni-supervised learning. arXiv preprint arXiv:1712.04440 (2017)

  3. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  4. Bucila, C., Caruana, R., Niculescu-Mizil, A.: Model compression: making big, slow models practical. In: Proceedings of the 12th International Conference on Knowledge Discovery and Data Mining (KDD 2006) (2006)

    Google Scholar 

  5. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR (2014)

    Google Scholar 

  6. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988. IEEE (2017)

    Google Scholar 

  7. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: Learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    CrossRef  Google Scholar 

  8. Sofka, M., Zhang, J., Good, S., Zhou, S.K., Comaniciu, D.: Automatic detection and measurement of structures in fetal head ultrasound volumes using sequential estimation and integrated detection network (IDN). IEEE TMI 33(5), 1054–1070 (2014)

    Google Scholar 

  9. Huang, R., Xie, W., Noble, J.A.: VP-Nets: efficient automatic localization of key brain structures in 3D fetal neurosonography. Med. Image Anal. 47, 127–139 (2018)

    CrossRef  Google Scholar 

  10. Papageorghiou, A.T.: International standards for fetal growth based on serial ultrasound measurements: the fetal growth longitudinal study of the intergrowth-21st project. Lancet 384(9946), 869–879 (2014)

    CrossRef  Google Scholar 

Download references

Acknowledgement

We acknowledge the Intergrowth-\(21^{st}\) study [10] for the image datasets. This work was supported by the National Institutes of Health (NIH) through National Institute on Alcohol Abuse and Alcoholism (NIAAA) (2 U01 AA014809-14), the Royal Academy of Engineering under the Engineering for Development Research Fellowship Scheme, and the EPSRC Programme Grant Seebibyte (EP/M013774/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruobing Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Huang, R., Noble, J.A., Namburete, A.I.L. (2018). Omni-Supervised Learning: Scaling Up to Large Unlabelled Medical Datasets. In: Frangi, A., Schnabel, J., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2018. MICCAI 2018. Lecture Notes in Computer Science(), vol 11070. Springer, Cham. https://doi.org/10.1007/978-3-030-00928-1_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00928-1_65

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00927-4

  • Online ISBN: 978-3-030-00928-1

  • eBook Packages: Computer ScienceComputer Science (R0)