Advertisement

Real Time RNN Based 3D Ultrasound Scan Adequacy for Developmental Dysplasia of the Hip

  • Olivia Paserin
  • Kishore Mulpuri
  • Anthony Cooper
  • Antony J. Hodgson
  • Rafeef Garbi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11070)

Abstract

Acquiring adequate ultrasound (US) image data is crucial for accurate diagnosis of developmental dysplasia of the hip (DDH), the most common pediatric hip disorder affecting on average one in every one thousand births. Presently, the acquisition of high quality US deemed adequate for diagnostic measurements requires thorough knowledge of infant hip anatomy as well as extensive experience in interpreting such scans. This work aims to provide rapid assurance to the operator, automatically at the time of acquisition, that the data acquired are suitable for accurate diagnosis. To this end, we propose a deep learning model for a fully automatic scan adequacy assessment of 3D US volumes. Our contributions include developing an effective criteria that defines the features required for DDH diagnosis in an adequate 3D US volume, proposing an efficient neural network architecture composed of convolutional layers and recurrent layers for robust classification, and validating our model’s agreement with classification labels from an expert radiologist on real pediatric clinical data. To the best of our knowledge, our work is the first to make use of inter-slice information within a 3D US volume for DDH scan adequacy. Using 200 3D US volumes from 25 pediatric patients, we demonstrate an accuracy of 82% with an area under receiver operating characteristic curve of 0.83 and a clinically suitable runtime of one second.

Keywords

Pediatric Ultrasound Hip Bone imaging Developmental dysplasia of the hip DDH CNN RNN US scan adequacy 

References

  1. 1.
    Committee on Quality Improvement, Subcommittee on Developmental Dysplasia of the Hip: Clinical practice guideline: early detection of developmental dysplasia of the hip. Pediatrics 105(4), 896 (2000)Google Scholar
  2. 2.
    Hoaglund, F.T., Steinbach, L.S.: Primary osteoarthritis of the hip: etiology and epidemiology. JAAOS 9(5), 320–327 (2001)Google Scholar
  3. 3.
    Atweh, L., Kan, J.: Multimodality imaging of developmental dysplasia of the hip. Pediatr. Radiol. 43(1), 166–171 (2013)CrossRefGoogle Scholar
  4. 4.
    Tschauner, C., Matthissen, H.: Hip sonography with Graf-method in newborns: checklists help to avoid mistakes. OUB 1, 7–8 (2012)Google Scholar
  5. 5.
    Graf, R., Mohajer, M., Florian, P.: Hip sonography update: quality-management, catastrophes - tips and tricks. Med. Ultrason. J. 15(4), 299–303 (2013)CrossRefGoogle Scholar
  6. 6.
    Jaremko, J., Mabee, M., Swami, V., Jamieson, L., Chow, K., Thompson, R.: Potential for change in US diagnosis of hip dysplasia solely caused by changes in probe orientation: patterns of alpha-angle variation revealed by using three-dimensional US. Radiology 273(3), 870–878 (2014)CrossRefGoogle Scholar
  7. 7.
    Hareendranathan, A., Mabee, M., Punithakumar, K., Noga, M., Jaremko, J.: A technique for semiautomatic segmentation of echogenic structures in 3D ultrasound, applied to infant hip dysplasia. Int. J. Comput. Assist. Radiol. Surg. 11(1), 31–42 (2016)CrossRefGoogle Scholar
  8. 8.
    Quader, N., Hodgson, A., Mulpuri, K., Cooper, A., Abugharbieh, R.: Towards reliable automatic characterization of neonatal hip dysplasia from 3D ultrasound images. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9900, pp. 602–609. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46720-7_70CrossRefGoogle Scholar
  9. 9.
    Maraci, M., Bridge, C., Napolitano, R., Papageorghiou, A., Noble, A.: A framework for analysis of linear ultrasound videos to detect fetal presentation and heartbeat. Med. Image Anal. 37, 22–36 (2017)CrossRefGoogle Scholar
  10. 10.
    Rahmatullah, B., Papageorghiou, A., Noble, J.A.: Automated selection of standardized planes from ultrasound volume. In: Suzuki, K., Wang, F., Shen, D., Yan, P. (eds.) MLMI 2011. LNCS, vol. 7009, pp. 35–42. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-24319-6_5CrossRefGoogle Scholar
  11. 11.
    Chen, H.: Ultrasound standard plane detection using a composite neural network framework. IEEE Trans. Cybern. 47(6), 1576–1586 (2017)CrossRefGoogle Scholar
  12. 12.
    Baumgartner, C.F., Kamnitsas, K., Matthew, J., Smith, S., Kainz, B., Rueckert, D.: Real-time standard scan plane detection and localisation in fetal ultrasound using fully convolutional neural networks. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 203–211. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46723-8_24CrossRefGoogle Scholar
  13. 13.
    Abdi, A.H., et al.: Quality assessment of echocardiographic cine using recurrent neural networks: feasibility on five standard view planes. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 302–310. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66179-7_35CrossRefGoogle Scholar
  14. 14.
    Quader, N., Hodgson, A.J., Mulpuri, K., Schaeffer, E., Abugharbieh, R.: Automatic evaluation of scan adequacy and dysplasia metrics in 2-D ultrasound images of the neonatal hip. Ultrasound Med. Biol. 43, 1252–1262 (2017)CrossRefGoogle Scholar
  15. 15.
    Paserin, O., Mulpuri, K., Cooper, A., Hodgson, A.J., Abugharbieh, R.: Automatic near real-time evaluation of 3D ultrasound scan adequacy for developmental dysplasia of the hip. In: Cardoso, M.J., et al. (eds.) CARE/CLIP -2017. LNCS, vol. 10550, pp. 124–132. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-67543-5_12CrossRefGoogle Scholar
  16. 16.
    Chollet, F.: Keras (2015). https://github.com/fchollet/keras
  17. 17.
    TensorFlow: Large-scale machine learning on heterogeneous systems (2015). tensorflow.org
  18. 18.
    Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRefGoogle Scholar
  19. 19.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations, pp. 1–14 (2015)Google Scholar
  20. 20.
    Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations, pp. 1–15 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Olivia Paserin
    • 1
  • Kishore Mulpuri
    • 1
  • Anthony Cooper
    • 1
  • Antony J. Hodgson
    • 1
  • Rafeef Garbi
    • 1
  1. 1.BiSICLUniversity of British ColumbiaVancouverCanada

Personalised recommendations