Skip to main content

The Cost of Continuity in the Collaborative Pickup and Delivery Problem

  • Conference paper
  • First Online:
Computational Logistics (ICCL 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11184))

Included in the following conference series:

Abstract

We assess the potential total profit in collaborative pickup and delivery problems, where carriers are willing to exchange transportation requests. For this, we design an adaptive large neighborhood search method that is used to generate solutions of publicly available but yet unsolved test instances. Our computational study reveals that collaboration profits might go up to 40% of the initial total profit, but typically come with unevenly distributed workloads. Such solution are of course not acceptable in practice. Thus, the aim of this study is to elaborate on the cost of continuity, i.e. the possibility for carriers to not deviate too much from their initial situations. Carriers might, for instance, not be willing to give up on some of their customers or want to stay with minimum profits. The rational behind keeping customers is that carriers might have long-term or particular valuable customer relationships, which they do not want to abandon. We discuss different types of continuity constraints and assess their impact on the total collaboration profit. Our computational study shows that even in the presence of continuity constraints remarkable total collaboration profits can be achieved.

Supported by FWF the Austrian Science Fund (Projectnumbers P27858-G27 and P26973-N15).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amous, M., Toumi, S., Jarboui, B., Eddaly, M.: A variable neighborhood search algorithm for the capacitated vehicle routing problem. Electron. Notes Discret. Math. 58, 231–238 (2017)

    Article  MathSciNet  Google Scholar 

  2. Archetti, C., Speranza, M., Vigo, D.: Vehicle routing problems with profits. In: Toth, P., Vigo, D. (eds.) Vehicle Routing: Problems, Methods, and Applications, pp. 273–297. MOS-SIAM Series on Optimization (2014)

    Google Scholar 

  3. Azi, N., Gendreau, M., Potvin, J.Y.: An adaptive large neighborhood search for a vehicle routing problem with multiple routes. Comput. Oper. Res. 41, 167–173 (2014)

    Article  MathSciNet  Google Scholar 

  4. Ballot, E., Fontane, F.: Reducing transportation \(\text{ CO }_2\) emissions through pooling of supply networks: perspectives from a case study in french retail chains. Prod. Plan. Control 21(6), 640–650 (2010)

    Article  Google Scholar 

  5. Bektaş, T., Demir, E., Laporte, G.: Green vehicle routing. In: Psaraftis, H. (ed.) Green Transportation Logistics. ISOR, pp. 243–265. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-17175-3_7

    Chapter  Google Scholar 

  6. Berbeglia, G., Cordeau, J.F., Gribkovskaia, I., Laporte, G.: Static pickup and delivery problems: a classification scheme and survey. TOP 15(1), 1–31 (2007)

    Article  MathSciNet  Google Scholar 

  7. Berbeglia, G., Cordeau, J.F., Laporte, G.: Dynamic pickup and delivery problems. Eur. J. Oper. Res. 202(1), 8–15 (2010)

    Article  Google Scholar 

  8. Berger, S., Bierwirth, C.: Solutions to the request reassignment problem in collaborative carrier networks. Transp. Res. Part E: Logist. Transp. Rev. 46, 627–638 (2010)

    Article  Google Scholar 

  9. Buijs, P., Alvarez, J.A.L., Veenstra, M., Roodbergen, K.J.: Improved collaborative transport planning at dutch logistics service provider fritom. Interfaces 46(2), 119–132 (2016)

    Article  Google Scholar 

  10. Cleophas, C., Cottrill, C., Ehmke, J.F., Tierney, K.: Collaborative urban transportation: recent advances in theory and practice. Eur. J. Oper. Res. (2018). https://doi.org/10.1016/j.ejor.2018.04.037

    Article  MathSciNet  Google Scholar 

  11. Cruijssen, F., Bräysy, O., Dullaert, W., Fleuren, H., Salomon, M.: Joint route planning under varying market conditions. Int. J. Phys. Distrib. Logist. Manag. 37(4), 287–304 (2007)

    Article  Google Scholar 

  12. Dai, B., Chen, H.: Mathematical model and solution approach for carriers collaborative transportation planning in less than truckload transportation. Int. J. Adv. Oper. Manag. 4, 62–84 (2012)

    Google Scholar 

  13. Defryn, C., Sörensen, K.: A fast two-level variable neighborhood search for the clustered vehicle routing problem. Comput. Oper. Res. 83, 78–94 (2017)

    Article  MathSciNet  Google Scholar 

  14. Dragomir, A.G., Nicola, D., Soriano, A., Gansterer, M.: Multidepot pickup and delivery problems in multiple regions: a typology and integrated model. Int. Trans. Oper. Res. 25(2), 569–597 (2018)

    Article  MathSciNet  Google Scholar 

  15. Fernandez, E., Roca-Riu, M., Speranza, M.G.: The shared customer collaboration vehicle routing problem. Eur. J. Oper. Res. 265(3), 1078–1093 (2018). https://doi.org/10.1016/j.ejor.2017.08.051

    Article  MathSciNet  MATH  Google Scholar 

  16. Gansterer, M., Hartl, R., Vetschera, R.: The cost of incentive compatibility in auction-based mechanisms for carrier collaboration. Networks (2018, forthcoming)

    Google Scholar 

  17. Gansterer, M., Hartl, R.F.: Request evaluation strategies for carriers in auction-based collaborations. OR Spectr. 38(1), 3–23 (2016)

    Article  MathSciNet  Google Scholar 

  18. Gansterer, M., Hartl, R.F.: Bundle generation in combinatorial transportation auctions. Working Paper (2017)

    Google Scholar 

  19. Gansterer, M., Hartl, R.F.: Collaborative vehicle routing: a survey. Eur. J. Oper. Res. 268(1), 1–12 (2018)

    Article  MathSciNet  Google Scholar 

  20. Gansterer, M., Hartl, R.F., Salzmann, P.E.H.: Exact solutions for the collaborative pickup and delivery problem. Central Eur. J. Oper. Res. 26(2), 357–371 (2018)

    Article  MathSciNet  Google Scholar 

  21. Ghilas, V., Demir, E., Woensel, T.V.: An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows and scheduled lines. Comput. Oper. Res. 72, 12–30 (2016)

    Article  MathSciNet  Google Scholar 

  22. Guajardo, M., Rönnqvist, M.: A review on cost allocation methods in collaborative transportation. Int. Trans. Oper. Res. 23(3), 371–392 (2016). https://doi.org/10.1111/itor.12205

    Article  MathSciNet  MATH  Google Scholar 

  23. Haddad, M.N., et al.: Large neighborhood-based metaheuristic and branch-and-price for the pickup and delivery problem with split loads. Eur. J. Oper. Res. (2018). https://doi.org/10.1016/j.ejor.2018.04.017

    Article  MathSciNet  Google Scholar 

  24. Kovacs, A., Parragh, S., Hartl, R.: A template-based adaptive large neighborhood search for the consistent vehicle routing problem. Networks 63(1), 60–81 (2014)

    Article  MathSciNet  Google Scholar 

  25. Krajewska, M., Kopfer, H.: Collaborating freight forwarding enterprises. OR Spectr. 28(3), 301–317 (2006)

    Article  Google Scholar 

  26. Lin, C., Choy, K., Ho, G., Chung, S., Lam, H.: Survey of green vehicle routing problem: past and future trends. Expert Syst. Appl. 41(4, Part 1), 1118–1138 (2014)

    Article  Google Scholar 

  27. Lin, C.: A cooperative strategy for a vehicle routing problem with pickup and delivery time windows. Comput. Ind. Eng. 55(4), 766–782 (2008)

    Article  Google Scholar 

  28. Lu, Q., Dessouky, M.: An exact algorithm for the multiple vehicle pickup and delivery problem. Transp. Sci. 38(4), 503–514 (2004)

    Article  Google Scholar 

  29. Matl, P., Hartl, R.F., Vidal, T.: Workload equity in vehicle routing problems: a survey and analysis. Transp. Sci. 52(2), 239–260 (2018). https://doi.org/10.1287/trsc.2017.0744

    Article  Google Scholar 

  30. Molenbruch, Y., Braekers, K., Caris, A.: Benefits of horizontal cooperation in dial-a-ride services. Transp. Res. Part E: Logist. Transp. Rev. 107, 97–119 (2017)

    Article  Google Scholar 

  31. Montoya-Torres, J.R., Muñoz-Villamizar, A., Vega-Mejia, C.A.: On the impact of collaborative strategies for goods delivery in city logistics. Prod. Plan. Control 27(6), 443–455 (2016)

    Article  Google Scholar 

  32. Nadarajah, S., Bookbinder, J.: Less-than-truckload carrier collaboration problem: Modeling framework and solution approach. J. Heuristics 19, 917–942 (2013)

    Article  Google Scholar 

  33. Parragh, S., Dörner, K., Hartl, R.: A survey on pickup and delivery problems. Part II: transportation between pickup and delivery locations. J. für Betriebswirtschaft 58, 21–51 (2008)

    Article  Google Scholar 

  34. Pérez-Bernabeu, E., Juan, A.A., Faulin, J., Barrios, B.B.: Horizontal cooperation in road transportation: a case illustrating savings in distances and greenhouse gas emissions. Int. Trans. Oper. Res. 22(3), 585–606 (2015)

    Article  MathSciNet  Google Scholar 

  35. Polacek, M., Benkner, S., Doerner, K.F., Hartl, R.F.: A cooperative and adaptive variable neighborhood search for the multi depot vehicle routing problem with time windows. Bus. Res. 1(2), 207–218 (2008)

    Article  Google Scholar 

  36. Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows. Transp. Sci. 40(4), 455–472 (2006)

    Article  Google Scholar 

  37. Sanchez, M., Pradenas, L., Deschamps, J.C., Parada, V.: Reducing the carbon footprint in a vehicle routing problem by pooling resources from different companies. NETNOMICS: Econ. Res. Electron. Netw. 17(1), 29–45 (2016)

    Article  Google Scholar 

  38. Speranza, M.G.: Trends in transportation and logistics. Eur. J. Oper. Res. 264(3), 830–836 (2018)

    Article  MathSciNet  Google Scholar 

  39. Vanovermeire, C., Sörensen, K., Breedam, A.V., Vannieuwenhuyse, B., Verstrepen, S.: Horizontal logistics collaboration: decreasing costs through flexibility and an adequate cost allocation strategy. Int. J. Logist. Res. Appl. 17(4), 339–355 (2014)

    Article  Google Scholar 

  40. Verdonck, L., Caris, A., Ramaekers, K., Janssens, G.K.: Collaborative logistics from the perspective of road transportation companies. Transp. Rev. 33(6), 700–719 (2013)

    Article  Google Scholar 

  41. Wang, X., Kopfer, H., Gendreau, M.: Operational transportation planning of freight forwarding companies in horizontal coalitions. Eur. J. Oper. Res. 237(3), 1133–1141 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaretha Gansterer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gansterer, M., Hartl, R.F., Wieser, S. (2018). The Cost of Continuity in the Collaborative Pickup and Delivery Problem. In: Cerulli, R., Raiconi, A., Voß, S. (eds) Computational Logistics. ICCL 2018. Lecture Notes in Computer Science(), vol 11184. Springer, Cham. https://doi.org/10.1007/978-3-030-00898-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00898-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00897-0

  • Online ISBN: 978-3-030-00898-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics