Advertisement

“Dual-Probe” X-Ray Absorption Spectroscopy

  • Raphael Enoque Ferraz de PaivaEmail author
Chapter
  • 118 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

XAS represents a powerful technique for probing the oxidation state and coordination sphere of Au-containing species in solution. In addition, in the context of the interaction of metallodrugs with a metalloprotein, XAS can be used in a “dual-probe” approach, by monitoring both the absorption edge of the metal complex and also the edge of the metal present in the metalloprotein. As a proof-of-concept, we evaluated the interaction of Au(III) complexes with ZnFs by monitoring the Au L3-edge and also the Zn K-edge. Furthermore, given the unique stability and reactivity of the Au(C^N) coordination motif discussed in Part II—Chap.  5, the interaction of the compound [Au(bnpy)Cl2] with ZnFs was also studied by XAS.

Keywords

White Line Intensity XAFS Beamline Zinc Supplementation XANES Spectra Interaction Products 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Berners-Price, S.J., Filipovska, A.: Gold compounds as therapeutic agents for human diseases. Metallomics 3(9), 863 (2011).  https://doi.org/10.1039/c1mt00062dCrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Milacic, V., Chen, D., Ronconi, L., Landis-Piwowar, K.R., Fregona, D., Dou, Q.P.: A Novel anticancer gold(III) dithiocarbamate compound inhibits the activity of a purified 20S proteasome and 26S proteasome in human breast cancer cell cultures and xenografts. Cancer Res. 66(21), 10478–10486 (2006).  https://doi.org/10.1158/0008-5472.CAN-06-3017CrossRefPubMedGoogle Scholar
  3. 3.
    Ronconi, L., Giovagnini, L., Marzano, C., Bettìo, F., Graziani, R., Pilloni, G., Fregona, D.: Gold dithiocarbamate derivatives as potential antineoplastic agents: Design, spectroscopic properties, and in vitro antitumor activity. Inorg. Chem. 44(6), 1867–1881 (2005).  https://doi.org/10.1021/ic048260vCrossRefPubMedGoogle Scholar
  4. 4.
    Che, C.-M., Sun, R.W.-Y., Yu, W.-Y., Ko, C.-B., Zhu, N., Sun, H.: Gold(III) porphyrins as a new class of anticancer drugs: cytotoxicity, DNA binding and induction of apoptosis in human cervix epitheloid cancer cells. Chem. Commun. (14), 1718–1719 (2003)  https://doi.org/10.1039/b303294a
  5. 5.
    Jacques, A., Lebrun, C., Casini, A., Kieffer, I., Proux, O., Latour, J.-M., Sénèque, O.: Reactivity of Cys 4 zinc finger domains with gold(III) complexes: insights into the formation of “gold fingers”. Inorg. Chem. 54(8), 4104–4113 (2015).  https://doi.org/10.1021/acs.inorgchem.5b00360CrossRefGoogle Scholar
  6. 6.
    de Paula, Q. A., Liu, Q., Almaraz, E., Denny, J.A., Mangrum, J.B., Bhuvanesh, N., Darensbourg, M.Y., Farrell, N.P.: Reactions of palladium and gold complexes with zinc-thiolate chelates using electrospray mass spectrometry and X-ray diffraction: molecular identification of [Pd(bme-dach)], [Au(bme-dach)]+ and [ZnCl(bme-dach)]2Pd. Dalton Trans. (48), 10896–10903 (2009)  https://doi.org/10.1039/b917748p
  7. 7.
    Spell, S.R., Farrell, N.P.: Synthesis and properties of the first [Au(dien)(N-heterocycle)] 3+ compounds. Inorg. Chem. 53(1), 30–32 (2014).  https://doi.org/10.1021/ic402772jCrossRefGoogle Scholar
  8. 8.
    Spell, S.R., Farrell, N.P.: [Au(dien)(N-heterocycle)] 3+ : reactivity with biomolecules and zinc finger peptides. Inorg. Chem. 54(1), 79–86 (2015).  https://doi.org/10.1021/ic501784nCrossRefPubMedGoogle Scholar
  9. 9.
    Cinellu, M.A., Zucca, A., Stoccoro, S., Minghetti, G., Manassero, M., Sansoni, M.: Synthesis and characterization of gold(III) adducts and cyclometallated derivatives with 2-substituted pyridines. Crystal structure of [Au{NC5H4(CMe2C6H4)-2}Cl2]. J. Chem. Soc. Dalt. Trans. (17), 2865–2872 (1995)  https://doi.org/10.1039/dt9950002865
  10. 10.
    Casini, A., Diawara, M.C., Scopelliti, R., Zakeeruddin, S.M., Grätzel, M., Dyson, P.J., Abbott, B.J., Mayo, J.G., Shoemaker, R.H., Boyd, M.R.: Synthesis, characterisation and biological properties of gold(III) compounds with modified bipyridine and bipyridylamine ligands. Dalton Trans. 39(9), 2239 (2010).  https://doi.org/10.1039/b921019aCrossRefPubMedGoogle Scholar
  11. 11.
    Figueroa, S.J.A., Mauricio, J.C., Murari, J., Beniz, D.B., Piton, J.R., Slepicka, H.H., de Sousa, M.F., Espíndola, A.M., Levinsky, A.P.S.: Upgrades to the XAFS2 beamline control system and to the endstation at the LNLS. J. Phys: Conf. Ser. 712(1), 012022 (2016).  https://doi.org/10.1088/1742-6596/712/1/012022CrossRefGoogle Scholar
  12. 12.
    Ravel, B., Newville, M.: ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12(4), 537–541 (2005).  https://doi.org/10.1107/S0909049505012719CrossRefPubMedGoogle Scholar
  13. 13.
    Tolentino, H.C.N., Ramos, A.Y., Alves, M.C.M., Barrea, R.A., Tamura, E., Cezar, J.C., Watanabe, N.: A, 2.3 to 25 keV XAS beamline at LNLS. J. Synchrotron Radiat. 8(3), 1040–1046 (2001).  https://doi.org/10.1107/S0909049501005143CrossRefPubMedGoogle Scholar
  14. 14.
    Neese, F.: The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2(1), 73–78 (2012).  https://doi.org/10.1002/wcms.81CrossRefGoogle Scholar
  15. 15.
    Weigend, F., Ahlrichs, R., Peterson, K.A., Dunning, T.H., Pitzer, R.M., Bergner, A.: Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 7(18), 3297 (2005).  https://doi.org/10.1039/b508541aCrossRefPubMedGoogle Scholar
  16. 16.
    Petrenko, T., Kossmann, S., Neese, F.: Efficient time-dependent density functional theory approximations for hybrid density functionals: analytical gradients and parallelization. J. Chem. Phys. 134(5), 054116 (2011).  https://doi.org/10.1063/1.3533441CrossRefPubMedGoogle Scholar
  17. 17.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996).  https://doi.org/10.1103/PhysRevLett.77.3865CrossRefGoogle Scholar
  18. 18.
    Perdew, J.P., Ernzerhof, M., Burke, K.: Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105(22), 9982–9985 (1996).  https://doi.org/10.1063/1.472933CrossRefGoogle Scholar
  19. 19.
    Adamo, C., Barone, V.: Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110(13), 6158–6170 (1999).  https://doi.org/10.1063/1.478522CrossRefGoogle Scholar
  20. 20.
    Hess, B.A.: Applicability of the no-pair equation with free-particle projection operators to atomic and molecular structure calculations. Phys. Rev. A 32(2), 756–763 (1985).  https://doi.org/10.1103/PhysRevA.32.756CrossRefGoogle Scholar
  21. 21.
    Hess, B.A.: Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. Phys. Rev. A 33(6), 3742–3748 (1986).  https://doi.org/10.1103/PhysRevA.33.3742CrossRefGoogle Scholar
  22. 22.
    Jansen, G., Hess, B.A.: Revision of the Douglas-Kroll transformation. Phys. Rev. A 39(11), 6016–6017 (1989).  https://doi.org/10.1103/PhysRevA.39.6016CrossRefGoogle Scholar
  23. 23.
    Pantazis, D.A., Chen, X.-Y., Landis, C.R., Neese, F.: All-electron scalar relativistic basis sets for third-row transition metal atoms. J. Chem. Theory Comput. 4(6), 908–919 (2008).  https://doi.org/10.1021/ct800047tCrossRefPubMedGoogle Scholar
  24. 24.
    Izsák, R., Neese, F.: An overlap fitted chain of spheres exchange method. J. Chem. Phys. 135(14), 144105 (2011).  https://doi.org/10.1063/1.3646921CrossRefPubMedGoogle Scholar
  25. 25.
    Neese, F., Wennmohs, F., Hansen, A., Becker, U.: Efficient, approximate and parallel Hartree-Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree-Fock exchange. Chem. Phys. 356(1), 98–109 (2009).  https://doi.org/10.1016/j.chemphys.2008.10.036CrossRefGoogle Scholar
  26. 26.
    Messori, L., Balerna, A., Ascone, I., Castellano, C., Gabbiani, C., Casini, A., Marchioni, C., Jaouen, G., Congiu Castellano, A.: X-ray absorption spectroscopy studies of the adducts formed between cytotoxic gold compounds and two major serum proteins. JBIC, J. Biol. Inorg. Chem. 16(3), 491–499 (2011).  https://doi.org/10.1007/s00775-010-0748-5CrossRefPubMedGoogle Scholar
  27. 27.
    Gabbiani, C., Massai, L., Scaletti, F., Michelucci, E., Maiore, L., Cinellu, M.A., Messori, L.: Protein metalation by metal-based drugs: reactions of cytotoxic gold compounds with cytochrome c and lysozyme. JBIC, J. Biol. Inorg. Chem. 17(8), 1293–1302 (2012).  https://doi.org/10.1007/s00775-012-0952-6CrossRefPubMedGoogle Scholar
  28. 28.
    Garg, D., Torbett, B.E.: Advances in targeting nucleocapsid–nucleic acid interactions in HIV-1 therapy. Virus Res. 193, 135–143 (2014).  https://doi.org/10.1016/j.virusres.2014.07.004CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Spell, S.R., Mangrum, J.B., Peterson, E.J., Fabris, D., Ptak, R., Farrell, N.P.: Au(<scp> iii </scp>) compounds as HIV nucleocapsid protein (NCp7)–nucleic acid antagonists. Chem. Commun. 53(1), 91–94 (2017).  https://doi.org/10.1039/C6CC07970ACrossRefGoogle Scholar
  30. 30.
    Đurović, M.D., Bugarčić, Ž.D., Heinemann, F.W., van Eldik, R.: Substitution versus redox reactions of gold(III) complexes with L-cysteine, L-methionine and glutathione. Dalton Trans. 43(10), 3911–3921 (2014).  https://doi.org/10.1039/c3dt53140fCrossRefPubMedGoogle Scholar
  31. 31.
    Djeković, A., Petrović, B., Bugarčić, Ž.D., Puchta, R., van Eldik, R.: Kinetics and mechanism of the reactions of Au(III) complexes with some biologically relevant molecules. Dalton Trans. 41(13), 3633–3641 (2012).  https://doi.org/10.1039/c2dt11843bCrossRefPubMedGoogle Scholar
  32. 32.
    Summers, M.F., Henderson, L.E., Chance, M.R., South, T.L., Blake, P.R., Perez-Alvarado, G., Bess, J.W., Sowder, R.C., Arthur, L.O., Sagi, I., et al.: Nucleocapsid zinc fingers detected in retroviruses: EXAFS studies of intact viruses and the solution-state structure of the nucleocapsid protein from HIV-1. Protein Sci. 1(5), 563–574 (1992).  https://doi.org/10.1002/pro.5560010502CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Giachini, L., Veronesi, G., Francia, F., Venturoli, G., Boscherini, F.: Synergic approach to XAFS analysis for the identification of most probable binding motifs for mononuclear zinc sites in metalloproteins. J. Synchrotron Radiat. 17(1), 41–52 (2010)  https://doi.org/10.1107/s090904950904919xCrossRefGoogle Scholar
  34. 34.
    Mijovilovich, A., Meyer-Klaucke, W.: Simulating the XANES of metalloenzymes ? A case study. J. Synchrotron Radiat. 10(1), 64–68 (2003)  https://doi.org/10.1107/s0909049502017296CrossRefGoogle Scholar
  35. 35.
    Laskay, Ü.A., Garino, C., Tsybin, Y.O., Salassa, L., Casini, A., Laskay, U.A., Garino, C., Tsybin, Y.O., Salassa, L., Casini, A.: Gold finger formation studied by high-resolution mass spectrometry and in silico methods. Chem. Commun. 51(9), 1612–1615 (2015).  https://doi.org/10.1039/C4CC07490DCrossRefGoogle Scholar
  36. 36.
    Chang, S.-Y., Uehara, A., Booth, S.G., Ignatyev, K., Mosselmans, J.F.W., Dryfe, R.A.W., Schroeder, S.L.M.: Structure and bonding in Au(I) chloride species: a critical examination of X-ray absorption spectroscopy (XAS) data. RSC Adv. 5(9), 6912–6918 (2015).  https://doi.org/10.1039/C4RA13087ACrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of ChemistryUniversity of CampinasCampinasBrazil

Personalised recommendations