“Dual-Probe” X-Ray Absorption Spectroscopy

  • Raphael Enoque Ferraz de PaivaEmail author
Part of the Springer Theses book series (Springer Theses)


XAS represents a powerful technique for probing the oxidation state and coordination sphere of Au-containing species in solution. In addition, in the context of the interaction of metallodrugs with a metalloprotein, XAS can be used in a “dual-probe” approach, by monitoring both the absorption edge of the metal complex and also the edge of the metal present in the metalloprotein. As a proof-of-concept, we evaluated the interaction of Au(III) complexes with ZnFs by monitoring the Au L3-edge and also the Zn K-edge. Furthermore, given the unique stability and reactivity of the Au(C^N) coordination motif discussed in Part II—Chap.  5, the interaction of the compound [Au(bnpy)Cl2] with ZnFs was also studied by XAS.


White Line Intensity XAFS Beamline Zinc Supplementation XANES Spectra Interaction Products 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Berners-Price, S.J., Filipovska, A.: Gold compounds as therapeutic agents for human diseases. Metallomics 3(9), 863 (2011). Scholar
  2. 2.
    Milacic, V., Chen, D., Ronconi, L., Landis-Piwowar, K.R., Fregona, D., Dou, Q.P.: A Novel anticancer gold(III) dithiocarbamate compound inhibits the activity of a purified 20S proteasome and 26S proteasome in human breast cancer cell cultures and xenografts. Cancer Res. 66(21), 10478–10486 (2006). Scholar
  3. 3.
    Ronconi, L., Giovagnini, L., Marzano, C., Bettìo, F., Graziani, R., Pilloni, G., Fregona, D.: Gold dithiocarbamate derivatives as potential antineoplastic agents: Design, spectroscopic properties, and in vitro antitumor activity. Inorg. Chem. 44(6), 1867–1881 (2005). Scholar
  4. 4.
    Che, C.-M., Sun, R.W.-Y., Yu, W.-Y., Ko, C.-B., Zhu, N., Sun, H.: Gold(III) porphyrins as a new class of anticancer drugs: cytotoxicity, DNA binding and induction of apoptosis in human cervix epitheloid cancer cells. Chem. Commun. (14), 1718–1719 (2003)
  5. 5.
    Jacques, A., Lebrun, C., Casini, A., Kieffer, I., Proux, O., Latour, J.-M., Sénèque, O.: Reactivity of Cys 4 zinc finger domains with gold(III) complexes: insights into the formation of “gold fingers”. Inorg. Chem. 54(8), 4104–4113 (2015). Scholar
  6. 6.
    de Paula, Q. A., Liu, Q., Almaraz, E., Denny, J.A., Mangrum, J.B., Bhuvanesh, N., Darensbourg, M.Y., Farrell, N.P.: Reactions of palladium and gold complexes with zinc-thiolate chelates using electrospray mass spectrometry and X-ray diffraction: molecular identification of [Pd(bme-dach)], [Au(bme-dach)]+ and [ZnCl(bme-dach)]2Pd. Dalton Trans. (48), 10896–10903 (2009)
  7. 7.
    Spell, S.R., Farrell, N.P.: Synthesis and properties of the first [Au(dien)(N-heterocycle)] 3+ compounds. Inorg. Chem. 53(1), 30–32 (2014). Scholar
  8. 8.
    Spell, S.R., Farrell, N.P.: [Au(dien)(N-heterocycle)] 3+ : reactivity with biomolecules and zinc finger peptides. Inorg. Chem. 54(1), 79–86 (2015). Scholar
  9. 9.
    Cinellu, M.A., Zucca, A., Stoccoro, S., Minghetti, G., Manassero, M., Sansoni, M.: Synthesis and characterization of gold(III) adducts and cyclometallated derivatives with 2-substituted pyridines. Crystal structure of [Au{NC5H4(CMe2C6H4)-2}Cl2]. J. Chem. Soc. Dalt. Trans. (17), 2865–2872 (1995)
  10. 10.
    Casini, A., Diawara, M.C., Scopelliti, R., Zakeeruddin, S.M., Grätzel, M., Dyson, P.J., Abbott, B.J., Mayo, J.G., Shoemaker, R.H., Boyd, M.R.: Synthesis, characterisation and biological properties of gold(III) compounds with modified bipyridine and bipyridylamine ligands. Dalton Trans. 39(9), 2239 (2010). Scholar
  11. 11.
    Figueroa, S.J.A., Mauricio, J.C., Murari, J., Beniz, D.B., Piton, J.R., Slepicka, H.H., de Sousa, M.F., Espíndola, A.M., Levinsky, A.P.S.: Upgrades to the XAFS2 beamline control system and to the endstation at the LNLS. J. Phys: Conf. Ser. 712(1), 012022 (2016). Scholar
  12. 12.
    Ravel, B., Newville, M.: ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12(4), 537–541 (2005). Scholar
  13. 13.
    Tolentino, H.C.N., Ramos, A.Y., Alves, M.C.M., Barrea, R.A., Tamura, E., Cezar, J.C., Watanabe, N.: A, 2.3 to 25 keV XAS beamline at LNLS. J. Synchrotron Radiat. 8(3), 1040–1046 (2001). Scholar
  14. 14.
    Neese, F.: The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2(1), 73–78 (2012). Scholar
  15. 15.
    Weigend, F., Ahlrichs, R., Peterson, K.A., Dunning, T.H., Pitzer, R.M., Bergner, A.: Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 7(18), 3297 (2005). Scholar
  16. 16.
    Petrenko, T., Kossmann, S., Neese, F.: Efficient time-dependent density functional theory approximations for hybrid density functionals: analytical gradients and parallelization. J. Chem. Phys. 134(5), 054116 (2011). Scholar
  17. 17.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). Scholar
  18. 18.
    Perdew, J.P., Ernzerhof, M., Burke, K.: Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105(22), 9982–9985 (1996). Scholar
  19. 19.
    Adamo, C., Barone, V.: Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110(13), 6158–6170 (1999). Scholar
  20. 20.
    Hess, B.A.: Applicability of the no-pair equation with free-particle projection operators to atomic and molecular structure calculations. Phys. Rev. A 32(2), 756–763 (1985). Scholar
  21. 21.
    Hess, B.A.: Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. Phys. Rev. A 33(6), 3742–3748 (1986). Scholar
  22. 22.
    Jansen, G., Hess, B.A.: Revision of the Douglas-Kroll transformation. Phys. Rev. A 39(11), 6016–6017 (1989). Scholar
  23. 23.
    Pantazis, D.A., Chen, X.-Y., Landis, C.R., Neese, F.: All-electron scalar relativistic basis sets for third-row transition metal atoms. J. Chem. Theory Comput. 4(6), 908–919 (2008). Scholar
  24. 24.
    Izsák, R., Neese, F.: An overlap fitted chain of spheres exchange method. J. Chem. Phys. 135(14), 144105 (2011). Scholar
  25. 25.
    Neese, F., Wennmohs, F., Hansen, A., Becker, U.: Efficient, approximate and parallel Hartree-Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree-Fock exchange. Chem. Phys. 356(1), 98–109 (2009). Scholar
  26. 26.
    Messori, L., Balerna, A., Ascone, I., Castellano, C., Gabbiani, C., Casini, A., Marchioni, C., Jaouen, G., Congiu Castellano, A.: X-ray absorption spectroscopy studies of the adducts formed between cytotoxic gold compounds and two major serum proteins. JBIC, J. Biol. Inorg. Chem. 16(3), 491–499 (2011). Scholar
  27. 27.
    Gabbiani, C., Massai, L., Scaletti, F., Michelucci, E., Maiore, L., Cinellu, M.A., Messori, L.: Protein metalation by metal-based drugs: reactions of cytotoxic gold compounds with cytochrome c and lysozyme. JBIC, J. Biol. Inorg. Chem. 17(8), 1293–1302 (2012). Scholar
  28. 28.
    Garg, D., Torbett, B.E.: Advances in targeting nucleocapsid–nucleic acid interactions in HIV-1 therapy. Virus Res. 193, 135–143 (2014). Scholar
  29. 29.
    Spell, S.R., Mangrum, J.B., Peterson, E.J., Fabris, D., Ptak, R., Farrell, N.P.: Au(<scp> iii </scp>) compounds as HIV nucleocapsid protein (NCp7)–nucleic acid antagonists. Chem. Commun. 53(1), 91–94 (2017). Scholar
  30. 30.
    Đurović, M.D., Bugarčić, Ž.D., Heinemann, F.W., van Eldik, R.: Substitution versus redox reactions of gold(III) complexes with L-cysteine, L-methionine and glutathione. Dalton Trans. 43(10), 3911–3921 (2014). Scholar
  31. 31.
    Djeković, A., Petrović, B., Bugarčić, Ž.D., Puchta, R., van Eldik, R.: Kinetics and mechanism of the reactions of Au(III) complexes with some biologically relevant molecules. Dalton Trans. 41(13), 3633–3641 (2012). Scholar
  32. 32.
    Summers, M.F., Henderson, L.E., Chance, M.R., South, T.L., Blake, P.R., Perez-Alvarado, G., Bess, J.W., Sowder, R.C., Arthur, L.O., Sagi, I., et al.: Nucleocapsid zinc fingers detected in retroviruses: EXAFS studies of intact viruses and the solution-state structure of the nucleocapsid protein from HIV-1. Protein Sci. 1(5), 563–574 (1992). Scholar
  33. 33.
    Giachini, L., Veronesi, G., Francia, F., Venturoli, G., Boscherini, F.: Synergic approach to XAFS analysis for the identification of most probable binding motifs for mononuclear zinc sites in metalloproteins. J. Synchrotron Radiat. 17(1), 41–52 (2010) Scholar
  34. 34.
    Mijovilovich, A., Meyer-Klaucke, W.: Simulating the XANES of metalloenzymes ? A case study. J. Synchrotron Radiat. 10(1), 64–68 (2003) Scholar
  35. 35.
    Laskay, Ü.A., Garino, C., Tsybin, Y.O., Salassa, L., Casini, A., Laskay, U.A., Garino, C., Tsybin, Y.O., Salassa, L., Casini, A.: Gold finger formation studied by high-resolution mass spectrometry and in silico methods. Chem. Commun. 51(9), 1612–1615 (2015). Scholar
  36. 36.
    Chang, S.-Y., Uehara, A., Booth, S.G., Ignatyev, K., Mosselmans, J.F.W., Dryfe, R.A.W., Schroeder, S.L.M.: Structure and bonding in Au(I) chloride species: a critical examination of X-ray absorption spectroscopy (XAS) data. RSC Adv. 5(9), 6912–6918 (2015). Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of ChemistryUniversity of CampinasCampinasBrazil

Personalised recommendations