Skip to main content

Estimation of the True Evolutionary Distance Under the INFER Model

  • Conference paper
  • First Online:
Comparative Genomics (RECOMB-CG 2018)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 11183))

Included in the following conference series:

Abstract

Genome rearrangements are evolutionary events that shuffle genomic architectures. Usually the rearrangement distance between two genomes is estimated as the minimal number of rearrangements needed to transform one genome into another, which is usually referred to as the parsimony assumption.

Since in reality the parsimony assumption may or may not hold, the question arises of estimating the true evolutionary distance (i.e., the actual number of genome rearrangements between the genomes of two species). While several methods for solving this problem have been developed, all of them have their own disadvantages. In the current paper we consider a very general model and provide a flexible estimator as well as the limits of applicability for the most popular estimation methods, such as the maximum parsimony method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In the breakpoint graph constructed on synteny blocks of two genomes, there are no trivial cycles since no adjacency is shared by both genomes. However, the breakpoint graph constructed on orthologous genes or multi-genome synteny blocks may contain trivial cycles.

References

  1. Alexeev, N., Alekseyev, M.A.: Estimation of the true evolutionary distance under the fragile breakage model. BMC Genomics 18(Suppl 4), 19–27 (2017)

    Google Scholar 

  2. Alexeev, N., Aidagulov, R., Alekseyev, M.A.: A computational method for the rate estimation of evolutionary transpositions. In: Ortuño, F., Rojas, I. (eds.) IWBBIO 2015. LNCS, vol. 9043, pp. 471–480. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16483-0_46

    Chapter  Google Scholar 

  3. Alexeev, N., Avdeyev, P., Alekseyev, M.A.: Comparative genomics meets topology: a novel view on genome median and halving problems. BMC Bioinform. 17(14), 418 (2016)

    Article  Google Scholar 

  4. Avdeyev, P., Alexeev, N., Rong, Y., Alekseyev, M.A.: A unified ILP framework for genome median, halving, and aliquoting problems under DCJ. In: Meidanis, J., Nakhleh, L. (eds.) RECOMB-CG 2017. LNCS, vol. 10562, pp. 156–178. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67979-2_9

    Chapter  Google Scholar 

  5. Biller, P., Gueguen, L., Knibbe, C., Tannier, E.: Breaking good: accounting for fragility of genomic regions in rearrangement distance estimation. Genome Biol. Evol. 8(5), 1427–1439 (2016)

    Article  Google Scholar 

  6. Braga, M.D.V., Willing, E., Stoye, J.: Genomic distance with DCJ and indels. In: Moulton, V., Singh, M. (eds.) WABI 2010. LNCS, vol. 6293, pp. 90–101. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15294-8_8

    Chapter  Google Scholar 

  7. Cayley, A.: A theorem on trees. Q. J. Math. 23, 376–378 (1889)

    MATH  Google Scholar 

  8. Compeau, P.E.C.: A simplified view of DCJ-indel distance. In: Raphael, B., Tang, J. (eds.) WABI 2012. LNCS, vol. 7534, pp. 365–377. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33122-0_29

    Chapter  Google Scholar 

  9. Compeau, P.E.C.: DCJ-Indel sorting revisited. Algorithms Mol. Biol. 8(1), 6 (2013)

    Article  Google Scholar 

  10. El-Mabrouk, N.: Genome rearrangement by reversals and insertions/deletions of contiguous segments. In: Giancarlo, R., Sankoff, D. (eds.) CPM 2000. LNCS, vol. 1848, pp. 222–234. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45123-4_20

    Chapter  Google Scholar 

  11. Jung, S., Cestaro, A., Troggio, M., Main, D.: Whole genome comparisons of fragaria, prunus and malus reveal different modes of evolution between rosaceous subfamilies. BMC Genomics 13(129), 1–12 (2012)

    Google Scholar 

  12. Lin, Y., Moret, B.M.: Estimating true evolutionary distances under the DCJ model. Bioinformatics 24(13), i114–i122 (2008). https://doi.org/10.1093/bioinformatics/btn148

    Article  Google Scholar 

  13. Ma, J., et al.: Reconstructing contiguous regions of an ancestral genome. Genome Res. 16(12), 1557–1565 (2006)

    Article  Google Scholar 

  14. Nadeau, J.H., Taylor, B.A.: Lengths of chromosomal segments conserved since divergence of man and mouse. Proc. Natl. Acad. Sci. 81(3), 814–818 (1984). https://doi.org/10.1073/pnas.81.3.814

    Article  Google Scholar 

  15. Ohno, S.: Evolution by Gene Duplication. Springer, Berlin (1970). https://doi.org/10.1007/978-3-642-86659-3

    Book  Google Scholar 

  16. Pevzner, P.A., Tesler, G.: Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution. Proc. Natl. Acad. Sci. 100, 7672–7677 (2003)

    Article  Google Scholar 

  17. Shao, M., Lin, Y.: Approximating the edit distance for genomes with duplicate genes under DCJ, insertion and deletion. BMC Bioinform. 13, S13 (2012). BioMed Central

    Article  Google Scholar 

  18. Shao, M., Lin, Y., Moret, B.: An exact algorithm to compute the DCJ distance for genomes with duplicate genes. In: Sharan, R. (ed.) RECOMB 2014. LNCS, vol. 8394, pp. 280–292. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05269-4_22

    Chapter  Google Scholar 

  19. Swenson, K.M., Marron, M., Earnest-DeYoung, J.V., Moret, B.M.E.: Approximating the true evolutionary distance between two genomes. J. Exp. Algorithmics 12, 3–5 (2008)

    Article  MathSciNet  Google Scholar 

  20. The OEIS Foundation: The On-Line Encyclopedia of Integer Sequences (2018). http://oeis.org

  21. Wang, L.S., Warnow, T.: Estimating true evolutionary distances between genomes. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, pp. 637–646. ACM (2001)

    Google Scholar 

  22. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21(16), 3340–3346 (2005)

    Article  Google Scholar 

  23. Yancopoulos, S., Friedberg, R.: Sorting genomes with insertions, deletions and duplications by DCJ. In: Nelson, C.E., Vialette, S. (eds.) RECOMB-CG 2008. LNCS, vol. 5267, pp. 170–183. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87989-3_13

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors thank Artem Vasilyev and Pavel Avdeyev for fruitful discussions and the anonymous reviewers for valuable comments.

The work of NA was financially supported by the Government of the Russian Federation through the ITMO Fellowship and Professorship Program. The work of AZ was financially supported by the Government of the Russian Federation (Grant 08-08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikita Alexeev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zabelkin, A., Alexeev, N. (2018). Estimation of the True Evolutionary Distance Under the INFER Model. In: Blanchette, M., Ouangraoua, A. (eds) Comparative Genomics. RECOMB-CG 2018. Lecture Notes in Computer Science(), vol 11183. Springer, Cham. https://doi.org/10.1007/978-3-030-00834-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00834-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00833-8

  • Online ISBN: 978-3-030-00834-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics