Advertisement

Reconstructing Gene Networks of Forest Trees from Gene Expression Data: Toward Higher-Resolution Approaches

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 940)

Abstract

In two of our recent systems biology studies of forest trees we reconstructed gene networks active in wood tissue development for an undomesticated tree genus, Populus. In the first study, we used time series data to determine gene expression dynamics underlying wood formation in response to gravitational stimulus. In the second study, we integrated data from newly generated and publicly available transcriptome profiling, transcription factor binding, DNA accessibility and genome-wide association mapping experiments, to identify relationships among genes expressed during wood formation. We demonstrated that these approaches can be used for dissecting complex developmental responses in trees, and can reveal gene clusters and mechanisms influencing poorly understood developmental processes. Combining orthogonal approaches can yield better resolved gene networks, but the resulting network modules may contain large numbers of genes. This limitation reflects the difficulty in creating a variety of experimental conditions that can reveal expression and functional differences among genes within a module, thus imposing limits on the resolving power of network models in practice. To resolve networks at a finer level we are now adding a complementary approach to our work: using cross-species gene network inference. In this approach, transcriptome assemblies of two or more species are considered together to identify expression responses common to all species and also responses that are species specific. To that end here we present a new tool, fastOC, for identifying gene co-expression networks across multiple species. We provide initial evidence that the tool works effectively in calculating co-expression modules with minimal computing requirements, thus making cross-species gene network comparison practical.

Keywords

Bioinformatics Gene networks Tree genomics 

References

  1. 1.
    Barabasi, A.L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5(2), 101 (2004)CrossRefGoogle Scholar
  2. 2.
    Bergman, A., Siegal, M.L.: Evolutionary capacitance as a general feature of complex gene networks. Nature 424(6948), 549 (2003)CrossRefGoogle Scholar
  3. 3.
    Bhalla, U.S., Iyengar, R.: Emergent properties of networks of biological signaling pathways. Science 283(5400), 381–387 (1999)CrossRefGoogle Scholar
  4. 4.
    Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech.: Theory Exp. 2008(10), P10008 (2008)CrossRefGoogle Scholar
  5. 5.
    Brady, S.M., et al.: A stele-enriched gene regulatory network in the Arabidopsis root. Mol. Syst. Biol. 7(1), 459 (2011)CrossRefGoogle Scholar
  6. 6.
    Ciliberti, S., Martin, O.C., Wagner, A.: Robustness can evolve gradually in complex regulatory gene networks with varying topology. PLoS Comput. Biol. 3(2), e15 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gene Ontology Consortium: The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 32(Suppl\_1), D258–D261 (2004)Google Scholar
  8. 8.
    Djebali, S., et al.: Landscape of transcription in human cells. Nature 489(7414), 101 (2012)CrossRefGoogle Scholar
  9. 9.
    Ellis, T., Wang, X., Collins, J.J.: Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nat. Biotechnol. 27(5), 465 (2009)CrossRefGoogle Scholar
  10. 10.
    Flannick, J., Novak, A., Srinivasan, B.S., McAdams, H.H., Batzoglou, S.: Graemlin: general and robust alignment of multiple large interaction networks. Genome Res. 16(9), 1169–1181 (2006)CrossRefGoogle Scholar
  11. 11.
    Gerstein, M.B., et al.: Architecture of the human regulatory network derived from ENCODE data. Nature 489(7414), 91 (2012)CrossRefGoogle Scholar
  12. 12.
    Gerttula, S., et al.: Transcriptional and hormonal regulation of gravitropism of woody stems in Populus. Plant Cell 27, 2800–2813 (2015). pp. tpc-15Google Scholar
  13. 13.
    Han, J.D.J., et al.: Evidence for dynamically organized modularity in the yeast protein–protein interaction network. Nature 430(6995), 88 (2004)CrossRefGoogle Scholar
  14. 14.
    Kalaev, M., Bafna, V., Sharan, R.: Fast and accurate alignment of multiple protein networks. In: Vingron, M., Wong, L. (eds.) RECOMB 2008. LNCS, vol. 4955, pp. 246–256. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78839-3_21CrossRefGoogle Scholar
  15. 15.
    Kellis, M., et al.: Defining functional DNA elements in the human genome. Proc. Natl. Acad. Sci. 111(17), 6131–6138 (2014)CrossRefGoogle Scholar
  16. 16.
    Langfelder, P., Zhang, B., Horvath, S.: Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. Bioinformatics 24(5), 719–720 (2007)CrossRefGoogle Scholar
  17. 17.
    Liao, C.S., Lu, K., Baym, M., Singh, R., Berger, B.: IsoRankN: spectral methods for global alignment of multiple protein networks. Bioinformatics 25(12), i253–i258 (2009)CrossRefGoogle Scholar
  18. 18.
    Liu, Y.Y., Slotine, J.J., Barabási, A.L.: Controllability of complex networks. Nature 473(7346), 167 (2011)CrossRefGoogle Scholar
  19. 19.
    Long, T.A., Brady, S.M., Benfey, P.N.: Systems approaches to identifying gene regulatory networks in plants. Annu. Rev. Cell Dev. Biol. 24, 81–103 (2008)CrossRefGoogle Scholar
  20. 20.
    Matasci, N., et al.: Data access for the 1,000 plants (1KP) project. GigaScience 3(1), 17 (2014)CrossRefGoogle Scholar
  21. 21.
    Schadt, E.E.: Molecular networks as sensors and drivers of common human diseases. Nature 461(7261), 218 (2009)CrossRefGoogle Scholar
  22. 22.
    Serin, E.A., Nijveen, H., Hilhorst, H.W., Ligterink, W.: Learning from co-expression networks: possibilities and challenges. Front. Plant Sci. 7, 444 (2016)CrossRefGoogle Scholar
  23. 23.
    Shinozaki, K., Yamaguchi-Shinozaki, K.: Gene networks involved in drought stress response and tolerance. J. Exp. Bot. 58(2), 221–227 (2007)CrossRefGoogle Scholar
  24. 24.
    Taylor-Teeples, M., et al.: An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 517(7536), 571 (2015)CrossRefGoogle Scholar
  25. 25.
    Usadel, B., et al.: Co-expression tools for plant biology: opportunities for hypothesis generation and caveats. Plant Cell Environ. 32(12), 1633–1651 (2009)CrossRefGoogle Scholar
  26. 26.
    Von Dassow, G., Meir, E., Munro, E.M., Odell, G.M.: The segment polarity network is a robust developmental module. Nature 406(6792), 188 (2000)CrossRefGoogle Scholar
  27. 27.
    Yan, K.K., Wang, D., Rozowsky, J., Zheng, H., Cheng, C., Gerstein, M.: OrthoClust: an orthology-based network framework for clustering data across multiple species. Genome Biol. 15(8), R100 (2014)CrossRefGoogle Scholar
  28. 28.
    Zinkgraf, M., Gerttula, S., Zhao, S., Filkov, V., Groover, A.: Transcriptional and temporal response of Populus stems to gravi-stimulation. J. Integr. Plant Biol. (2018).  https://doi.org/10.1111/jipb.12645
  29. 29.
    Zinkgraf, M., Liu, L., Groover, A., Filkov, V.: Identifying gene coexpression networks underlying the dynamic regulation of wood-forming tissues in Populus under diverse environmental conditions. New Phytol. 214(4), 1464–1478 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Western Washington UniversityBellinghamUSA
  2. 2.United States Forest ServiceDavisUSA
  3. 3.University of CaliforniaDavisUSA

Personalised recommendations