Skip to main content

Astrocyte Networks and Intercellular Calcium Propagation

  • Chapter
  • First Online:
Computational Glioscience

Abstract

Astrocytes organize in complex networks through connections by gap junction channels that are regulated by extra- and intracellular signals. Calcium signals generated in individual cells can propagate across these networks in the form of intercellular calcium waves, mediated by diffusion of second messengers molecules such as inositol 1,4,5-trisphosphate. The mechanisms underpinning the large variety of spatiotemporal patterns of propagation of astrocytic calcium waves, however, remains a matter of investigation. In the last decade, awareness has grown on the morphological diversity of astrocytes as well as their connections in networks, which seem dependent on the brain area, developmental stage, and the ultrastructure of the associated neuropile. It is speculated that this diversity underpins an equal functional variety, but the current experimental techniques are limited in supporting this hypothesis because they do not allow to resolve the exact connectivity of astrocyte networks in the brain. With this aim, we present a general framework to model intercellular calcium wave propagation in astrocyte networks and use it to specifically investigate how different network topologies could influence shape, frequency, and propagation of these waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aberg ND, Rönnbäck L, Eriksson PS (1999) Connexin43 mRNA and protein expression during postnatal development of defined brain regions. Dev Brain Res 115(1):97–101

    Article  CAS  Google Scholar 

  • Allbritton NL, Meyer T, Stryer L (1992) Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science 260:107–260

    Google Scholar 

  • Bao X, Altenberg GA, Reuss L (2004) Mechanism of regulation of the gap junction protein connexin 43 by protein kinase C-mediated phosphorylation. Am J Physiol Cell Physiol 286(3):C647–C654

    Article  CAS  PubMed  Google Scholar 

  • Barthélemy M (2010) Spatial networks. Phys Rep 499:1–101

    Article  CAS  Google Scholar 

  • Bazargani N, Attwell D (2016) Astrocyte calcium signaling: the third wave. Nat Neurosci 19(2):182–189

    Article  CAS  PubMed  Google Scholar 

  • Bennett M, Farnell L, Gibson W (2005) A quantitative model of purinergic junctional transmission of calcium waves in astrocyte networks. Biophys. J 89(4):2235–2250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blomstrand F, Aberg ND, Eriksson PS, Hansson E, Rönnbäck L (1999) Extent of intercellular calcium wave propagation is related to gap junction permeability and level of connexin-43 expression in astrocytes in primary cultures from four brain regions. Neuroscience 92(1):255–265

    Article  CAS  PubMed  Google Scholar 

  • Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D-U (2006) Complex networks: structure and dynamics. Phys Rep 424(4–5):175–308

    Article  Google Scholar 

  • Bushong EA, Martone ME, Jones YZ, Ellisman MH (2002) Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22(1):183–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charles A (1998) Intercellular calcium waves in glia. Glia 24(1):39–49

    Article  CAS  PubMed  Google Scholar 

  • Chay T, Fan YS, Lee SY (1995) Bursting, spiking, chaos, fractals and universality in biological rhythms. Int J Bifurcat Chaos 5:595–635

    Article  Google Scholar 

  • Clements JD, Lester RAJ, Tong G, Jahr CE, Westbrook GL (1992) The time course of glutamate in the synaptic cleft. Science 258:1498–1501

    Article  CAS  PubMed  Google Scholar 

  • Codazzi F, Teruel MN, Meyer T (2001) Control of astrocyte Ca\(^{2+}\) oscillations and waves by oscillating translocation and activation of protein kinase C. Curr Biol 11(14):1089–1097

    Article  CAS  PubMed  Google Scholar 

  • Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247(4941):470–473

    Article  CAS  PubMed  Google Scholar 

  • Crank J (1980) The mathematics of diffusion, 2nd edn. Oxford University Press, USA

    Google Scholar 

  • D’Ambrosio R, Wenzel J, Schwartzkroin PA, McKhann GM, Janigro D (1998) Functional specialization and topographic segregation of hippocampal astrocytes. J Neurosci 18(12):4425–4438

    Article  PubMed  PubMed Central  Google Scholar 

  • Dani JW, Chernjavsky A, Smith SJ (1992) Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron 8(3):429–440

    Article  CAS  PubMed  Google Scholar 

  • De Pittà M, Goldberg M, Volman V, Berry H, Ben-Jacob E (2009) Glutamate regulation of calcium and \(IP_3\) oscillating and pulsating dynamics in astrocytes. J Biol Phys 35(4):383–411

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Pittà M, Volman V, Berry H, Parpura V, Liaudet N, Volterra A, Ben-Jacob E (2012) Computational quest for understanding the role of astrocyte signaling in synaptic transmission and plasticity. Front Comp Neurosci 6:98

    Google Scholar 

  • De Young GW, Keizer J (1992) A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca\(^{2+}\) concentration. Proc Natl Acad Sci 89(20):9895–9899

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding F, O’Donnell J, Thrane AS, Zeppenfeld D, Kang H, Xie L, Wang F, Nedergaard M (2013) \(\alpha \) 1-Adrenergic receptors mediate coordinated Ca\(^{2+}\) signaling of cortical astrocytes in awake, behaving mice. Cell Calcium 54(6):387–394

    Article  CAS  PubMed  Google Scholar 

  • Dokukina I, Gracheva M, Grachev E, Gunton J (2008) Role of network connectivity in intercellular calcium signaling. Physica D 237(6):745–754

    Article  CAS  Google Scholar 

  • Dupont G, Erneux C (1997) Simulations of the effects of inositol 1,4,5-trisphosphate 3-kinase and 5-phosphatase activities on Ca\(^{2+}\) oscillations. Cell Calcium 22(5):321–331

    Article  CAS  PubMed  Google Scholar 

  • Dupont G, Goldbeter A (1993) One-pool model for Ca\(^{2+}\) oscillations involving Ca\(^{2+}\) and inositol 1,4,5-trisphosphate as co-agonists for Ca\(^{2+}\) release. Cell Calcium 14:311–322

    Article  CAS  PubMed  Google Scholar 

  • Dyhrfjeld-Johnsen J, Santhakumar V, Morgan RJ, Huerta R, Tsimring L, Soltesz I (2007) Topological determinants of epileptogenesis in large-scale structural and functional models of the dentate gyrus derived from experimental data. J Neurophysiol 97(2):1566–1587

    Article  PubMed  Google Scholar 

  • Edwards JR, Gibson WG (2010) A model for Ca\(^{2+}\) waves in networks of glial cells incorporating both intercellular and extracellular communication pathways. J Theor Biol 263(1):45–58

    Article  CAS  PubMed  Google Scholar 

  • Falcke M (2004) Reading the patterns in living cells: the physics of Ca\(^{2+}\) signaling. Adv Phys 53(3):255–440

    Article  CAS  Google Scholar 

  • Fiacco TA, McCarthy KD (2004) Intracellular astrocyte calcium waves in situ increase the frequency of spontaneous AMPA receptor currents in CA1 pyramidal neurons. J Neurosci 24(3):722–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiacco TA, McCarthy KD (2006) Astrocyte calcium elevations: properties, propagation, and effects on brain signaling. Glia 54(7):676–690

    Article  PubMed  Google Scholar 

  • Galea E, Morrison W, Hudry E, Arbel-Ornath M, Bacskai BJ, Gómez-Isla T, Stanley HE, Hyman BT (2015) Topological analyses in APP/PS1 mice reveal that astrocytes do not migrate to amyloid-\(\beta \) plaques. Proc Natl Acad Sci 112(51):15556–15561

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giaume C (2010) Astroglial wiring is adding complexity to neuroglial networking. Front Neuroenergetics 2:129

    Article  PubMed  PubMed Central  Google Scholar 

  • Giaume C, Fromaget C, el Aoumari A, Cordier J, Glowinski J, Gros D (1991) Gap junctions in cultured astrocytes: single-channel currents and characterization of channel-forming protein. Neuron 6(1):133–143

    Article  CAS  PubMed  Google Scholar 

  • Giaume C, Koulakoff A, Roux L, Holcman D, Rouach N (2010) Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci 11(2):87–99

    Article  CAS  PubMed  Google Scholar 

  • Giaume C, McCarthy KD (1996) Control of gap-junctional communication in astrocytic networks. Trends Neurosci 19(8):319–325

    Article  CAS  PubMed  Google Scholar 

  • Goldberg M, De Pittà M, Volman V, Berry H, Ben-Jacob E (2010) Nonlinear gap junctions enable long-distance propagation of pulsating calcium waves in astrocyte networks. PLoS Comput Biol 6(8):e1000909

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Golomb D, Hansel D (2000) The number of synaptic inputs and the synchrony of large, sparse neuronal networks. Neural Comput 12(5):1095–1139

    Article  CAS  PubMed  Google Scholar 

  • Harris AL (2001) Emerging issues in connexin channels: biophysics fills the gap. Q Rev Biophys 34:325–472

    Article  CAS  PubMed  Google Scholar 

  • Höfer T, Politi A, Heinrich R (2001) Intercellular Ca\(^{2+}\) wave propagation through gap-junctional Ca\(^{2+}\) diffusion: a theoretical study. Biophys J 80(1):75–87

    Article  PubMed  PubMed Central  Google Scholar 

  • Höfer T, Venance L, Giaume C (2002) Control and plasticity of intercellular calcium waves in astrocytes: a modeling approach. J Neurosci 22(12):4850–4859

    Article  PubMed  PubMed Central  Google Scholar 

  • Houades V, Koulakoff A, Ezan P, Seif I, Giaume C (2008) Gap junction-mediated astrocytic networks in the mouse barrel cortex. J Neurosci 28(20):5207–5217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y-F, Liao C-K, Lin J-C, Jow G-M, Wang H-S, Wu J-C (2013) Antofine-induced connexin43 gap junction disassembly in rat astrocytes involves protein kinase C\(\beta \). Neurotoxicology 35:169–179

    Article  CAS  PubMed  Google Scholar 

  • Iacobas DA, Suadicani SO, Spray DC, Scemes E (2006) A stochastic two-dimensional model of intercellular Ca\(^{2+}\) wave spread in glia. Biophys J 90(1):24–41

    Article  CAS  PubMed  Google Scholar 

  • Irvine RF, Schell MJ (2001) Back in the water: the return of the inositol phosphates. Nat Rev Mol Cell Biol 2(5):327–338

    Article  CAS  PubMed  Google Scholar 

  • Iwabuchi S, Kawahara K, Makisaka K, Sato H (2002) Photolytic flash-induced intercellular calcium waves using caged calcium ionophore in cultured astrocytes from newborn rats. Exp Brain Res 146(1):103–116

    Article  CAS  PubMed  Google Scholar 

  • Kang M, Othmer HG (2009) Spatiotemporal characteristics of calcium dynamics in astrocytes. Chaos 19(3):037116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kasthuri N, Hayworth K, Berger DR, Schalek RL, Conchello JA, Knowles-Barley S, Lee D, Vázquez-Reina A, Kaynig V, Jones TR, Roberts M, Lyskowski JM, Tapia JC, Seung HS, Roncal WG, Vogelstein JT, Burns R, Sussman DL, Priebe CE, Pfister H, Lichtman JW (2015) Saturated reconstruction of a volume of neocortex. Cell 162(3):648–661

    Article  CAS  PubMed  Google Scholar 

  • Koulakoff A, Ezan P, Giaume C (2008) Neurons control the expression of connexin 30 and connexin 43 in mouse cortical astrocytes. Glia 56(12):1299–1311

    Article  PubMed  Google Scholar 

  • Kuchibhotla KV, Lattarulo CR, Hyman BT, Bacskai BJ (2009) Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science 323(5918):1211–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuga N, Sasaki T, Takahara Y, Matsuki N, Ikegaya Y (2011) Large-scale calcium waves traveling through astrocytic networks in vivo. J Neurosci 31(7):2607–2614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kummer U, Olsen LF, Green AK, Bomberg-Bauer E, Baier G (2000) Switching from simple to complex oscillations in calcium signaling. Biophys J 79:1188–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunze A, Congreso MR, Hartmann C, Wallraff-Beck A, Hüttmann K, Bedner P, Requardt R, Seifert G, Redecker C, Willecke K, Hofmann A, Pfeifer A, Theis M, Steinhäuser C (2009) Connexin expression by radial glia-like cells is required for neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci USA 106(27):11336–11341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kupferman R, Mitra PP, Hohenberg PC, Wang SS (1997) Analytical calculation of intracellular calcium wave characteristics. Biophys J 72(6):2430–2444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurth-Nelson ZL, Mishra A, Newman EA (2009) Spontaneous glial calcium waves in the retina develop over early adulthood. J Neurosci 29(36):11339–11346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lallouette J (2014) Modeling calcium responses in astrocyte networks: relationships between topology and dynamics. Ph.D. thesis, INSA de Lyon

    Google Scholar 

  • Lallouette J, De Pittà M, Ben-Jacob E, Berry H (2014) Sparse short-distance connections enhance calcium wave propagation in a 3D model of astrocyte networks. Front Comput Neurosci 8:45

    Google Scholar 

  • Li Y, Rinzel J (1994) Equations for InsP\(_3\) receptor-mediated \([\text{Ca}^{2+}]_\text{ i }\) oscillations derived from a detailed kinetic model: a Hodgkin–Huxley like formalism. J Theor Biol 166(4):461–473

    Google Scholar 

  • Luccioli S, Olmi S, Politi A, Torcini A (2012) Collective dynamics in sparse networks. Phys Rev Lett 109(13):138103

    Article  PubMed  CAS  Google Scholar 

  • MacDonald CL, Yu D, Buibas M, Silva GA (2008) Diffusion modeling of atp signaling suggests a partially regenerative mechanism underlies astrocyte intercellular calcium waves. Front. Neuroeng 1:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Matrosov VV, Kazantsev VB (2011) Bifurcation mechanisms of regular and chaotic network signaling in brain astrocytes. Chaos 21(2):023103

    Article  CAS  PubMed  Google Scholar 

  • Montoro RJ, Yuste R (2004) Gap junctions in developing neocortex: a review. Brain Res. Rev. 47(1–3):216–226

    Article  CAS  PubMed  Google Scholar 

  • Müller-Linow M, Hilgetag CC, Hütt M-T (2008) Organization of excitable dynamics in hierarchical biological networks. PLoS Comput Biol 4(9):e1000190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nagy JI, Rash JE (2000) Connexins and gap junctions of astrocytes and oligodendrocytes in the CNS. Brain Res Rev 32(1):29–44

    Article  CAS  PubMed  Google Scholar 

  • Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: Redefining the functional architecture of the brain. Trends Neurosci 26(10):523–530

    Article  CAS  PubMed  Google Scholar 

  • Newman MEJ (2003) The structure and function of complex networks. SIAM Rev. 45(2):167–256

    Article  Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Kerr JND, Helmchen F (2004) Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat Methods 1(1):31–37

    Article  CAS  PubMed  Google Scholar 

  • Olmi S, Livi R, Politi A, Torcini A (2010) Collective oscillations in disordered neural networks. Phys Rev E 81(4):046119

    Article  CAS  Google Scholar 

  • Pannasch U, Rouach N (2013) Emerging role for astroglial networks in information processing: from synapse to behavior. Trends Neurosci 36(7):405–417

    Article  CAS  PubMed  Google Scholar 

  • Parri HR, Gould TM, Crunelli V (2001) Spontaneous astrocytic Ca\(^{2+}\) oscillations in situ drive NMDAR-mediated neuronal excitation. Nat Neurosci 4(8):803–812

    Article  CAS  PubMed  Google Scholar 

  • Pina-Benabou MHD, Srinivas M, Spray DC, Scemes E (2001) Calmodulin kinase pathway mediates the K\(^+\)-induced increase in gap junctional communication between mouse spinal cord astrocytes. J Neurosci 21(17):6635–6643

    Article  PubMed  PubMed Central  Google Scholar 

  • Pivneva T, Haas B, Reyes-Haro D, Laube G, Veh R, Nolte C, Skibo G, Kettenmann H (2008) Store-operated Ca\(^{2+}\) entry in astrocytes: different spatial arrangement of endoplasmic reticulum explains functional diversity in vitro and in situ. Cell Calcium 43(6):591–601

    Article  CAS  PubMed  Google Scholar 

  • Rouach N, Avignone E, Même W, Koulakoff A, Venance L, Blomstrand F, Giaume C (2002) Gap junctions and connexin expression in the normal and pathological central nervous system. Biol Cell 94(7–8):457–475

    Article  CAS  PubMed  Google Scholar 

  • Rouach N, Glowinski J, Giaume C (2000) Activity-dependent neuronal control of gap-junctional communication in astrocytes. J Cell Biol 149(7):1513–1526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C (2008) Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322(5907):1551–1555

    Article  CAS  PubMed  Google Scholar 

  • Roux L, Benchenane K, Rothstein JD, Bonvento G, Giaume C (2011) Plasticity of astroglial networks in olfactory glomeruli. Proc Natl Acad Sci U S A

    Google Scholar 

  • Roxin A, Riecke H, Solla SA (2004) Self-sustained activity in a small-world network of excitable neurons. Phys Rev Lett 92(19):198101

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Gutiérrez D, Tozluoglu M, Barry JD, Pascual A, Mao Y, Escudero LM (2016) Fundamental physical cellular constraints drive self-organization of tissues. EMBO J 35(1):77–88

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T, Kuga N, Namiki S, Matsuki N, Ikegaya Y (2011) Locally synchronized astrocytes. Cereb Cortex 21:1889–1900

    Article  PubMed  Google Scholar 

  • Scemes E, Giaume C (2006) Astrocyte calcium waves: What they are and what they do. Glia 54(7):716–725

    Article  PubMed  PubMed Central  Google Scholar 

  • Scemes E, Spray DC (2012) Extracellular K\(^+\) and astrocyte signaling via connexin and pannexin channels. Neurochem Res 37(11):2310–2316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scemes E, Suadicani SO, Spray DC (2000) Intercellular communication in spinal cord astrocytes: fine tuning between gap junctions and P2 nucleotide receptors in calcium wave propagation. J Neurosci 20(4):1435–1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schipke CG, Boucsein C, Ohlemeyer C, Kirchhoff F, Kettenmann H (2002) Astrocyte Ca\(^{2+}\) waves trigger responses in microglial cells in brain slices. FASEB J 16(2):255–257

    Article  CAS  PubMed  Google Scholar 

  • Sherman A, Smith GD, Dai L, Miura RM (2001) Asymptotic analysis of buffered calcium diffusion near a point source. SIAM J Appl Math 61(5):1816–1838

    Article  Google Scholar 

  • Shuai JW, Jung P (2003) Selection of intracellular calcium patterns in a model with clustered Ca\(^{2+}\) release channels. Phys Rev E 67(3):031905

    Article  CAS  Google Scholar 

  • Sirnes S, Kjenseth A, Leithe E, Rivedal E (2009) Interplay between PKC and the MAP kinase pathway in connexin43 phosphorylation and inhibition of gap junction intercellular communication. Biochem Biophys Res Commun 382(1):41–45

    Article  CAS  PubMed  Google Scholar 

  • Skupin A, Kettenmann H, Winkler U, Wartenberg M, Sauer H, Tovey SC, Taylor CW, Falcke M (2008) How does intracellular Ca\(^{2+}\) oscillate: by chance or by clock? Biophys J 94:2404–2411

    Article  CAS  PubMed  Google Scholar 

  • Sneyd J, Charles AC, Sanderson MJ (1994) A model for the propagation of intracellular calcium waves. Am J Physiol 266(35):C293–C302

    Article  CAS  PubMed  Google Scholar 

  • Sneyd J, Keizer J, Sanderson MJ (1995a) Mechanisms of calcium oscillations and waves: a quantitative analysis. FASEB J 9(14):1463–1472

    Article  CAS  PubMed  Google Scholar 

  • Sneyd J, Sherratt J (1997) On the propagation of calcium waves in an inhomogeneous medium. SIAM J Appl Math 57(1):73–94

    Article  Google Scholar 

  • Sneyd J, Wetton BTR, Charles AC, Sanderson MJ (1995b) Intercellular calcium waves mediated by diffusion of inositol trisphosphate: a two-dimensional model. Am J Physiol 268(37):C1537–C1545

    Article  CAS  PubMed  Google Scholar 

  • Sneyd J, Wilkins M, Strahonja A, Sanderson MJ (1998) Calcium waves and oscillations driven by an intercellular gradient of inositol (1,4,5)-trisphosphate. Biophys Chem 72(1):101–109

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis M, Mantzaris NV (2006) Modeling of ATP-mediated signal transduction and wave propagation in astrocytic cellular networks. J Theor Biol 241:649–668

    Article  CAS  PubMed  Google Scholar 

  • Suadicani SO, Flores CE, Urban-Maldonado M, Beelitz M, Scemes E (2004) Gap junction channels coordinate the propagation of intercellular Ca\(^{2+}\) signals generated by P2Y receptor activation. Glia 48(3):217–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sul J-Y, Orosz G, Givens RS, Haydon PG (2004) Astrocytic connectivity in the hippocampus. Neuron Glia Biol 1(1):3–11

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun W, McConnell E, Pare J-F, Xu Q, Chen M, Peng W, Lovatt D, Han X, Smith Y, Nedergaard M (2013) Glutamate-dependent neuroglial calcium signaling differs between young and adult brain. Science 339(6116):197–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Y, Othmer H (1994) A model of calcium dynamics in cardiac myocytes based on the kinetics of ryanodine-sensitive calcium channels. Biophys J 67:2223–2235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tattini L, Olmi S, Torcini A (2012) Coherent periodic activity in excitatory Erdös–Renyi neural networks: The role of network connectivity. Chaos 22(2):023133

    Article  Google Scholar 

  • Theodosis DT, Poulain DA, Oliet SHR (2008) Activity-dependent structural and functional plasticity of astrocyte-neuron interactions. Physiol Rev 88(3):983–1008

    Article  CAS  PubMed  Google Scholar 

  • Tian GF, Takano T, Lin JH-C, Wang X, Bekar L, Nedergaard M (2006) Imaging of cortical astrocytes using 2-photon laser scanning microscopy in the intact mouse brain. Adv Drug Deliv Rev 58(7):773–787

    Article  CAS  PubMed  Google Scholar 

  • Ullah G, Jung P, Cornell-Bell AH (2006a) Anti-phase calcium oscillations in astrocytes via inositol (1,4,5)-trisphosphate regeneration. Cell Calcium 39(3):197–208

    Article  CAS  PubMed  Google Scholar 

  • Ullah G, Jung P, Cornell-Bell AH (2006b) Anti-phase calcium oscillations in astrocytes via inositol(1,4,5)-trisphosphate regeneration. Cell Calcium 39(3):197–208

    Article  CAS  PubMed  Google Scholar 

  • Wallach G, Lallouette J, Herzog N, De Pittà M, Ben Jacob E, Berry H, Hanein Y (2014) Glutamate mediated astrocytic filtering of neuronal activity. PLoS Comput Biol 10(12):e1003964

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Golomb D, Rinzel J (1995) Emergent spindle oscillations and intermittent burst firing in a thalamic model: specific neuronal mechanisms. Proc Natl Acad Sci U S A 92(12):5577–5581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watts DJ (1999) Small worlds: the dynamics of networks between order and randomness, chapter 2. Princeton University Press, Princeton, pp 33–36

    Google Scholar 

  • Weissman TA, Riquelme PA, Ivic L, Flint AC, Kriegstein AR (2004) Calcium waves propagate through radial glial cells and modulate proliferation in the developing neocortex. Neuron 43(5):647–661

    Article  CAS  PubMed  Google Scholar 

  • Witcher M, Kirov S, Harris K (2007) Plasticity of perisynaptic astroglia during synaptogenesis in the mature rat hippocampus. Glia 55(1):13–23

    Article  PubMed  Google Scholar 

  • Zanette DH (2002) Dynamics of rumor propagation on small-world networks. Phys Rev E 65(4):041908

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MDP acknowledges the support of Pôle emploi Rhône-Alpes, the “Alain Bensoussan” Postdoctoral Fellowship Program by the European Research Council in Informatics and Mathematics (ERCIM), and the Junior Leader Postdoctoral Fellowship Program by “la Caixa” Banking Foundation (LCF/BQ/LI18/11630006). MDP’s research at BCAM is also made possible thanks to the support of the Basque Government by the BERC 2018–2021 program, as well as by the Spanish Ministry of Science, Innovation and Universities through the BCAM Severo Ochoa accreditation SEV-2017-0718.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio De Pittà .

Editor information

Editors and Affiliations

Appendices

Appendix 1 Simulations of 3D Astrocytic Networks

1.1 Construction of Networks with Different Topology

The five different topologies for 3D astrocytic networks considered in this chapter were constructed as following detailed (see also Lallouette et al. 2014).

  • Link-radius networks were constructed connecting each astrocyte i to all cells contained in a sphere of radius d centered on i. The degree distribution of these networks displays some variability around the mean degree \(\langle k \rangle \), due to preliminary jitter of astrocyte locations in the absence of highly connected cells.

  • Regular-degree networks were developed connecting each astrocyte to its k nearest neighbors while forbidding links longer than \(d_{max}={150}\,{\upmu {\text {m}}}\). In doing so, connections were established in \(k_{reg}\) iterations to avoid directional biases. Namely, all nodes were randomly taken once per iteration m and linked to the nearest node i with degree \(k_i < m \le k_{reg}\) and located within \(d_{max}\) from the selected node.

  • Shortcut networks were constructed in a way similar to small-world networks (Watts 1999). We started by positioning astrocytes on a cubic lattice with internode distance a, linking each cell to its nearest neighbors at distances that were multiples of a up to l times. We then rewired each connection with probability \(p_s\) thereby randomly assigning one of its endpoint. Finally, we jittered the nodes positions as explained in the main text.

  • Spatial scale-free networks were incrementally built by spatially constrained preferential attachment (Barthélemy 2010). Briefly, astrocytes were progressively included in the network, one by one, and connected with \(m_{sf}\) cells. Each connection between a new astrocyte i and a target cell j was established with probability \(p_{i\rightarrow j} \propto k_j \exp (-d_{ij}/r_c)\), where \(k_j\) is the degree of the target cell j, \(d_{ij}\) represents the Euclidean distance between astrocytes i and j, and \(r_c\) sets the range of interaction between cells in the space. Small values of \(r_c\) result in connections between astrocytes that are limited to their neighbors, while large \(r_c\) values allow establishing long-distance connections. Spatially constrained preferential attachment may also produce some highly connected astrocytes or “hubs.”

  • Erdős-Rényi networks were built by linking each astrocyte pair with probability p, independently of their distance and existing degree. These networks are the only ones in our analysis that do not bear any spatial constraint.

Depending on whether \(r_c\) (respectively \(p_s\)) is large or not, spatial scale-free networks (respectively shortcut networks) can be regarded either as spatially constrained networks or as spatially unconstrained networks. Due to random wiring, some of the above procedures could result in disconnected networks. To minimize this scenario, we iterated the wiring procedure to ensure that, in our networks, disconnected node pairs accounted for \({<}2\)% of all possible node pairs. Parameters used to build the different networks in the simulations discussed in Sect. 7.3.2 are detailed in Table 7.2.

1.2 Numerical Procedures

Each network model consisted of \(3N=3993\) ODEs which we numerically solved by fourth-order Runge–Kutta integration with a time step of 0.01 s. The extent of ICW propagation (\(N_{act}\)) was quantified by the number of astrocytes that were activated at least once, where an astrocyte was considered to be activated whenever its Ca\(^{2+}\) concentration exceeded 0.7 \({\upmu }\)M. Each network model was produced into \(n=20\) different realizations, and mean degree (\(\langle k \rangle \)) and mean shortest path length (L) of each network model were averaged over realizations.

To generate ICWs, we stimulated the cell whose location was the closest to, if not coincident with the center of the 3D cubic lattice containing the network. Stimulation was delivered for \(0\le t \le {200}\,{\text {s}}\) connecting an IP\(_3\) reservoir of \({2}\,{\upmu }\)M to the central cell and allowing IP\(_3\) diffusion into that cell according to Eq. 7.5.

In networks with UAR astrocytes, we considered step increases of time by \(\Delta t = {0.1}\,{\text {s}}\), simulating a transition from a state x to a state y (with rate \(k_{x\rightarrow y}\) and \(x,y=\mathrm {U,\,A,\,R}\)), every time that a random number r drawn from a uniform distribution in [0, 1] at each \(\Delta t\) was such that \(r\le k_{x\rightarrow y}\cdot \Delta t\). In those networks, stimulation of the central cell was deployed forcing activation of its connected neighbors, since this was observed to be case in the majority of networks with biophysically modeled astrocytes.

Appendix 2 Supplementary Online Material and Software

Detailed derivation of the shell model (Sect. 7.4.2) can be downloaded from https://github.com/mdepitta/comp-glia-book/tree/master/Ch7.Lallouette. The file is provided along with the original LaTeX files within the folder associated with this chapter. In the same folder, the WxMaxima file is also provided. This file was used to analytically solve the ODE system at the core of the derivation of the shell model (Eqs. 1–3 in the supplementary online text).

Within the same repository, the code used for simulations of astrocyte networks presented in this chapter is also provided. The core source code is implemented in C++ and is located in folder. This code must preliminarily be compiled by from this directory. The Python script, relies on the compiled source code to generate all data sets to plot the figures of this chapter. Depending on the hardware configuration, it might take up to a day to complete all the simulations involved. By default, the software will attempt using all available cores on the local machine. Individual figures can be generated by for Fig. 7.3c, d; for Fig. 7.5c, d; and for Fig. 7.6e, f (Table 7.4).

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lallouette, J., De Pittà, M., Berry, H. (2019). Astrocyte Networks and Intercellular Calcium Propagation. In: De Pittà, M., Berry, H. (eds) Computational Glioscience. Springer Series in Computational Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-030-00817-8_7

Download citation

Publish with us

Policies and ethics