Skip to main content

Astrocytic Ion Dynamics: Implications for Potassium Buffering and Liquid Flow

  • Chapter
  • First Online:
Computational Glioscience

Abstract

We review modelling of astrocyte ion dynamics with a specific focus on the implications of so-called spatial potassium buffering where excess potassium in the extracellular space (ECS) is transported away to prevent pathological neural spiking. The recently introduced Kirchhoff–Nernst–Planck (KNP) scheme for modelling ion dynamics in astrocytes (and brain tissue in general) is outlined and used to study such spatial buffering. We next describe how the ion dynamics of astrocytes may regulate microscopic liquid flow by osmotic effects and how such microscopic flow can be linked to whole-brain macroscopic flow. We thus describe key elements in a putative multiscale theory with astrocytes linking neural activity on a microscopic scale to macroscopic fluid flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amedee T, Robert A, Coles J (1997) Potassium homeostasis and glial energy metabolism. Glia : 599–630

    Google Scholar 

  • Amiji MM, Sandmann BJ (2002) Applied physical pharmacy. McGraw-Hill

    Google Scholar 

  • Amiry-Moghaddam M, Williamson A, Palomba M, Eid T, de Lanerolle NC (2003) Delayed K+ clearance associated with aquaporin-4 mislocalization: phenotypic defects in brains of alpha-syntrophin-null mice. Proc Nat Acad Sci United States Am 100:13615–13620

    Article  CAS  Google Scholar 

  • Baber K, Mosthaf K, Flemisch B, Helmig R, Müthing S (2012) Numerical scheme for coupling two-phase compositional porous-media flow and one-phase compositional free flow. IMA J Appl Math 77:887–909

    Article  Google Scholar 

  • Bai M, Elsworth D, Roegiers JC (1993) Multiporosity/multipermeability approach to the simulation of naturally fractured reservoirs. Water Resour Res 29:1621–1633

    Article  Google Scholar 

  • Bear MF, Paradiso MA, Connors BW (2001) Neuroscience: Exploring the brain, 2nd edn. Lippincott Williams and Wilkins, Baltimore

    Google Scholar 

  • Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12:155–164

    Article  Google Scholar 

  • Cattaneo L, Zunino P (2013) Computational models for coupling tissue perfusion and microcirculation. MOX Report 25/2013

    Google Scholar 

  • Chen KC, Nicholson C (2000) Spatial buffering of potassium ions in brain extracellular space. Biophys J 78:2776–97

    Article  CAS  Google Scholar 

  • Coles J, Orkand R (1986) Free Concentrations of Na, K, and Cl in the Retina of the Honeybee Drone: Stimulus induced redistribution and Homeostasisa. Ann New 481: 303–317

    Article  CAS  Google Scholar 

  • Cordingley G, Somjen G (1978) The clearing of excess potassium from extracellular space in spinal cord and cerebral cortex. Brain Res 151:291–306

    Article  CAS  Google Scholar 

  • Cressman J, Ullah G, Ziburkus J, Schiff S, Barreto E (2009) The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: I. single neuron dynamics. J Comput Neurosci

    Google Scholar 

  • De Keyser J, Mostert JP, Koch MW (2008) Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders. J Neurol Sci 267:3–16

    Article  Google Scholar 

  • Destexhe A, Bal T, McCormick DA, Sejnowski TJ, Sejnowski J et al (1996) Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. J Neurophysiol 76:2049–2070

    Article  CAS  Google Scholar 

  • Devor A, Boas D, Einevoll G, Buxton R, Dale A (2012) Neuronal basis of non-invasive functional imaging: from bold fmri to microscopic neurovascular dynamics. In: Gruetter R (ed) Choi IY. Neural Metabolism In Vivo, Springer, pp 433–500

    Google Scholar 

  • Dietzel I, Heinemann U, Lux H (1989) Relations between slow extracellular potential changes, glial potassium buffering, and electrolyte and cellular volume changes during neuronal hyperactivity in cat. Glia 2:25–44

    Article  CAS  Google Scholar 

  • Einevoll G, Kayser C, Logothetis N, Panzeri S (2013) Modelling and analysis of local field potentials for studying the function of cortical circuits. Nat Rev Neurosci 14:770–785

    Article  CAS  Google Scholar 

  • Enger R, Gundersen GA, Haj-Yasein NN, Eilert-Olsen M, Thoren AE (2012) Molecular scaffolds underpinning macroglial polarization: an analysis of retinal Müller cells and brain astrocytes in mouse. Glia 60:2018–2026

    Article  Google Scholar 

  • Enger R, Tang W, Vindedal GF, Jensen V, Johannes Helm P, et al. (2015) Dynamics of ionic shifts in cortical spreading depression. Cerebral cortex. New York 1991, pp 1–8

    Article  Google Scholar 

  • Florence G, Dahlem MA, Almeida ACG, Bassani JWM, Kurths J (2009) The role of extracellular potassium dynamics in the different stages of ictal bursting and spreading depression: a computational study. J Theor Biol 258:219–228

    Article  CAS  Google Scholar 

  • Frankenhaeuser B, Hodgkin AL (1956) The after-effects of impulses in the giant nerve fibres of loligo. J Physiol 131:341–76

    Article  CAS  Google Scholar 

  • Furman CS, Gorelick-Feldman DA, Davidson KGV, Yasumura T, Neely JD (2003) Aquaporin-4 square array assembly: opposing actions of M1 and M23 isoforms. Proc Nat Acad Sci United States Am 100:13609–13614

    Article  CAS  Google Scholar 

  • Gardner-Medwin A (1983) Analysis of potassium dynamics in mammalian brain tissue. J Physiol: 393–426

    Article  CAS  Google Scholar 

  • Goriely A, Geers MG, Holzapfel GA, Jayamohan J, Jrusalem A, et al (2015) Mechanics of the brain: perspectives, challenges, and opportunities. Biomech Model Mechanobiol: 1–35

    Google Scholar 

  • Grisar T, Guillaume D, Delgado-Escueta AV (1992) Contribution of Na+, K(+)-ATPase to focal epilepsy: a brief review. Epilepsy Res 12:141–149

    Article  CAS  Google Scholar 

  • Grodzinsky F (2011) Fields, forces, and flows in biological systems. Garland Science, Taylor & Francis Group, London & New York

    Google Scholar 

  • Haj-Yasein NN, Bugge CE, Jensen V, Ostby I, Ottersen OP (2014) Deletion of aquaporin-4 increases extracellular K(+) concentration during synaptic stimulation in mouse hippocampus. Brain Struct Funct 220:2469–74

    Article  Google Scholar 

  • Haj-Yasein NN, Bugge CE, Jensen V, Østby I, Ottersen OP (2015) Deletion of aquaporin-4 increases extracellular K(+) concentration during synaptic stimulation in mouse hippocampus. Brain Struct Funct 220:2469–2474

    Article  CAS  Google Scholar 

  • Halnes G, Augustinaite S, Heggelund P, Einevoll GT, Migliore M (2011) A multi-compartment model for interneurons in the dorsal lateral geniculate nucleus. PLoS Comput Biol 7:e1002160

    Article  CAS  Google Scholar 

  • Halnes G, Ostby I, Pettersen KH, Omholt SW, Einevoll GT (2013) Electrodiffusive model for astrocytic and neuronal ion concentration dynamics. PLoS Computat Biol 9:e1003386

    Article  Google Scholar 

  • Halnes G, Mäki-Marttunen T, Keller D, Pettersen KH, Andreassen OA, Einevoll GT (2016) Effect of ionic diffusion on extracellular potentials in neural tissue. PLOS Comput Biol 12(11):e1005193

    Article  Google Scholar 

  • Halnes G, Mäki-Marttunen T, Pettersen KH, Andreassen OA, Einevoll GT (2017) Ion diffusion may introduce spurious current sources in current-source density (CSD) analysis. J Neurophysiol 118(1):114–120

    Article  Google Scholar 

  • Hämäläinen M, Hari R, Ilmoniemi R, Knuutila J, Lounasmaa OV (1993) Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65:413–497

    Article  Google Scholar 

  • Hashido M, Kidera A, Ikeguchi M (2007) Water transport in aquaporins: osmotic permeability matrix analysis of molecular dynamics simulations. Biophys J 93:373–385

    Article  CAS  Google Scholar 

  • Hertz L, Peng L, Dienel GA (2006) Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab (Official J Int Soc Cereb Blood Flow Metab) 27:219–249

    Article  Google Scholar 

  • Hertz L, Xu J, Song D, Yan E, Gu L et al (2013) Astrocytic and neuronal accumulation of elevated extracellular K+ with a 2/3 K+/Na+ flux ratioconsequences for energy metabolism, osmolarity and higher brain function. Front Computat Neurosci 7:1–22

    Google Scholar 

  • Hladky SB, Barrand MA (2014) Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS 11:26

    Article  Google Scholar 

  • Holter KE, Kehlet B, Devor A, Sejnowski TJ, Dale AM, Omholt SW, ... Pettersen KH (2017) Interstitial solute transport in 3D reconstructed neuropil occurs by diffusion rather than bulk flow. Proceedings of the National Academy of Sciences, 201706942

    Google Scholar 

  • Hübel N, Dahlem MA (2014) Dynamics from seconds to hours in Hodgkin-Huxley model with time-dependent ion concentrations and buffer reservoirs. PLoS Comput Biol 10:e1003941

    Article  Google Scholar 

  • Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W et al (2012) A Paravascular pathway facilitates CSF flow through the brain Parenchyma and the clearance of interstitial solutes, including amyloid \(\beta \). Sci Transl Med 4: 147ra111–147ra111

    Google Scholar 

  • Iliff JJ, Wang M, Zeppenfeld DM, Venkataraman A, Plog BA (2013) Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J Neurosci 33:18190–18199

    Article  CAS  Google Scholar 

  • Jensen MS, Yaari Y (1997) Role of intrinsic burst firing, potassium accumulation, and electrical coupling in the elevated potassium model of hippocampal epilepsy. J Neurophysiol 77:1224–33

    Article  CAS  Google Scholar 

  • Jung JS, Bhat RV, Preston GM, Guggino WB, Baraban JM (1994) Molecular characterization of an aquaporin cDNA from brain: candidate osmoreceptor and regulator of water balance. Proc Nat Acad Sci United States Am 91:13052–13056

    Article  CAS  Google Scholar 

  • Kager H, Wadman WJ, Somjen GG (2000) Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations. J Neurophysiol 84:495–512

    Article  CAS  Google Scholar 

  • Kager H, Wadman WJ, Somjen GG (2006) Seizure-like afterdischarges simulated in a model neuron. J Comput Neurosci 22:105–128

    Article  Google Scholar 

  • Kandel ER, Markram H, Matthews PM, Yuste R, Koch C (2013) Neuroscience thinks big (and collaboratively). Nat Rev Neurosci 14:659–664

    Article  CAS  Google Scholar 

  • Koch C (1999) Biophysics of computation: information processing in single neurons, 1st edn. Oxford University Press, New York

    Google Scholar 

  • Kofuji P, Newman EA (2004) Potassium buffering in the central nervous system. Neuroscience 129:1045–56

    Article  CAS  Google Scholar 

  • Kríz N, Syková E, Vyklický L (1975) Extracellular potassium changes in the spinal cord of the cat and their relation to slow potentials, active transport and impulse transmission. J Physiol 1:167–182

    Google Scholar 

  • Léonetti M, Dubois-Violette E (1998) Theory of electrodynamic instabilities in biological cells. Phys Rev Lett 81:1977–1980

    Article  Google Scholar 

  • Lopreore CL, Bartol TM, Coggan JS, Keller DX, Sosinsky GE (2008) Computational modeling of three-dimensional electrodiffusion in biological systems: application to the node of Ranvier. Biophys J 95:2624–35

    Article  CAS  Google Scholar 

  • Lothman E, Somjen G (1975) Extracellular potassium activity, intracellular and extracellular potential responses in the spinal cord. J Physiol 1:115–136

    Article  Google Scholar 

  • Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ et al (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523:337–341

    Article  CAS  Google Scholar 

  • Lu B, Zhou YC, Ga Huber, Bond SD, Holst MJ (2007) Electrodiffusion: a continuum modeling framework for biomolecular systems with realistic spatiotemporal resolution. J Chem Phys 127:135102

    Article  Google Scholar 

  • Lux HD, Heinemann U, Dietzel I (1986) Ionic changes and alterations in the size of the extracellular space during epileptic activity. Adv Neurol 44:619–39

    CAS  PubMed  Google Scholar 

  • Macaulay N, Zeuthen T (2012) Glial K clearance and cell swelling: key roles for cotransporters and pumps. Neurochem Res 37:2299–309

    Article  CAS  Google Scholar 

  • Mori Y (2009) From three-dimensional electrophysiology to the cable model: an asymptotic study. arXiv:09013914 [q-bioNC]: 1–39

  • Nanninga PM (2008) A computational neuron model based on Poisson Nernst Planck theory. ANZIAM J 50:46–59

    Article  Google Scholar 

  • Nedergaard M, Dirnagl U (2005) Role of glial cells in cerebral ischemia. Glia 50:281–6

    Article  Google Scholar 

  • Newman EA (1987) Distribution of potassium conductance in mammalian Muller (glial) cells: a comparative study. J Neurosci 7:2423–2432

    CAS  PubMed  Google Scholar 

  • Newman EA (1993) Inward-rectifying potassium channels in retinal glial (Müller) cells. J Neurosci (Official J Soc Neurosci) 13:3333–45

    Article  CAS  Google Scholar 

  • Nicholson C, Chen K, Hrabětová S, Tao L (2000) Diffusion of molecules in brain extracellular space: theory and experiment. Progr Brain Res 125:129–154

    Article  CAS  Google Scholar 

  • Nunez PL, Srinivasan R (2006) Electric fields of the brain: the Neurophysics of EEG, 2nd edn. Oxford University Press, Inc

    Chapter  Google Scholar 

  • Odette L, Newman EA (1988) Model of potassium dynamics in the central nervous system. Glia 210:198–210

    Article  Google Scholar 

  • Orkand RK, Nicholls JG, Kuffler SW (1966) Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol 29:788–806

    Article  CAS  Google Scholar 

  • Østby I, Øyehaug L, Einevoll GT, Nagelhus EA, Plahte E et al (2009) Astrocytic mechanisms explaining neural-activity-induced shrinkage of extraneuronal space. PLoS Comp Biol 5:e1000272

    Article  Google Scholar 

  • Øyehaug L, Østby I, Lloyd CM, Omholt SW, Einevoll GT (2012) Dependence of spontaneous neuronal firing and depolarisation block on astroglial membrane transport mechanisms. J Comput Neurosci 32:147–165

    Article  Google Scholar 

  • Pangrsic T, Potokar M, Haydon PG, Zorec R, Kreft M (2006) Astrocyte swelling leads to membrane unfolding, not membrane insertion. J. Neurochem 99(2):514–523

    Article  Google Scholar 

  • Park EH, Durand DM (2006) Role of potassium lateral diffusion in non-synaptic epilepsy: a computational study. J Theoret Biol 238:666–82

    Article  CAS  Google Scholar 

  • Pods J, Schönke J, Bastian P (2013) Electrodiffusion models of neurons and extracellular space using the Poisson-Nernst-Planck equations-numerical simulation of the intra- and extracellular potential for an axon model. Biophys J 105:242–54

    Article  CAS  Google Scholar 

  • Qian N, Sejnowski T (1989) An electro-diffusion model for computing membrane potentials and ionic concentrations in branching dendrites, spines and axons. Biol Cybern 15:1–15

    Article  Google Scholar 

  • Rall W (1977) Core conductor theory and cable properties of neurons. In: Kandel E, Brookhardt J, Mountcastle VM (eds) Handbook of physiology, Bethesda: American Physiological Society, chapter 3, pp 39–97

    Google Scholar 

  • Rutkowska G, Haughton V, Linge S, Mardal KA (2012) Patient-specific 3d simulation of cyclic csf flow at the craniocervical region. Am J Neuroradiol 33:1756–1762

    Article  CAS  Google Scholar 

  • Safronov BV, Wolff M, Vogel W (1999) Axonal expression of sodium channels in rat spinal neurones during postnatal development. J Physiol 514(Pt 3):729–734

    Article  CAS  Google Scholar 

  • Sibille J, Duc KD, Holcman D, Rouach N (2015) The neuroglial potassium cycle during neurotransmission: role of kir4. 1 channels. PLoS Comput Biol 11:e1004137

    Article  Google Scholar 

  • Silberstein C (2004) Membrane organization and function of M1 and M23 isoforms of aquaporin-4 in epithelial cells. AJP. Renal Physiol 287:F501–F511

    Article  CAS  Google Scholar 

  • Smith AJ, Jin BJ, Verkman AS (2015) Muddying the water in brain edema? Trends Neurosci 38:331–332

    Article  CAS  Google Scholar 

  • Solbrå A, Bergersen AW, van den Brink J, Malthe-Sørenssen A, Einevoll GT, Halnes G (2018) A Kirchhoff-Nernst-Planck framework for modeling large scale extracellular electrodiffusion surrounding morphologically detailed neurons. BioRxiv. 261107

    Google Scholar 

  • Somjen GG (2004) Ions in the brain: normal function, seizures, and stroke, 1 edn. Oxford University Press, USA

    Google Scholar 

  • Somjen GG (2001) Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiol Rev 81:1065–1096

    Article  CAS  Google Scholar 

  • Somjen GG, Kager H, Wadman WJ (2008) Computer simulations of neuron-glia interactions mediated by ion flux. J Computat Neurosci 25:349–65

    Article  CAS  Google Scholar 

  • Støverud K, Langtangen H, Haughton V, Mardal K (2013) Csf pressure and velocity in obstructions of the subarachnoid spaces. Neuroradiol J 26:218–226

    Article  Google Scholar 

  • Syková E, Nicholson C (2008) Diffusion in brain extracellular space. Physiol Rev 88:1277–1340

    Article  Google Scholar 

  • Thrane AS, Rangroo Thrane V, Plog BA, Nedergaard M (2015) Filtering the muddied waters of brain edema. Trends Neurosci 38:333–335

    Article  CAS  Google Scholar 

  • Tong J, Briggs MM, McIntosh TJ (2012) Water permeability of aquaporin-4 channel depends on bilayer composition, thickness, and elasticity. Biophysl J 103:1899–1908

    Article  CAS  Google Scholar 

  • Tully BJ, Ventikos Y (2011) Cerebral water transport using multiple-network poroelastic theory: application to normal pressure hydrocephalus. J Fluid Mech 667:188–215

    Article  CAS  Google Scholar 

  • Ullah G, Schiff S (2009) Models of epilepsy. Scholarpedia 4:1409

    Article  Google Scholar 

  • Vardakis JC, Tully BJ, Ventikos Y (2013) Exploring the efficacy of endoscopic ventriculostomy for hydrocephalus treatment via a multicompartmental poroelastic model of CSF transport: A computational perspective. PloS ONE 8:1–16

    Article  Google Scholar 

  • Verkhratsky A, Butt AM (2013) Glial physiology and pathophysiology. Wiley

    Google Scholar 

  • Wang DD, Bordey A (2008) The astrocyte odyssey. Progr Neurobiol 86:342–67

    CAS  Google Scholar 

  • Xie L, Kang H, Xu Q, Chen MJ, Liao Y (2013) Sleep drives metabolite clearance from the adult brain. Science 342:373–377

    Article  CAS  Google Scholar 

  • Zhang Y, Barres BA (2010) Astrocyte heterogeneity: an underappreciated topic in neurobiology. Curr Opin Neurobiol 20:588–594

    Article  CAS  Google Scholar 

  • Zhang H, Verkman AS (2008) Aquaporin-4 independent Kir4.1 K+ channel function in brain glial cells. Mol Cell Neurosci 37:1–10

    Article  Google Scholar 

  • Ziburkus J, Cressman JR, Barreto E, Schiff SJ (2006) Interneuron and pyramidal cell interplay during in vitro seizure-like events. J Neurophysiol 95:3948–54

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geir Halnes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Halnes, G., Pettersen, K.H., Øyehaug, L., Rognes, M.E., Einevoll, G.T. (2019). Astrocytic Ion Dynamics: Implications for Potassium Buffering and Liquid Flow. In: De Pittà, M., Berry, H. (eds) Computational Glioscience. Springer Series in Computational Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-030-00817-8_14

Download citation

Publish with us

Policies and ethics