Skip to main content

Computational Models of Pathophysiological Glial Activation in CNS Disorders

  • Chapter
  • First Online:
Computational Glioscience

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI))

Abstract

Glial cells, in general, and astrocytes, in particular, are indispensable for homeostatic regulation of neural function, which positions these non-neuronal cells in the limelight of CNS pathologies. The renewed interest in glial physiology and the advent of new experimental methods motivated the development of computational models of glial cells. In this contribution, we review the development and challenges of computational models of pathophysiological glial activation in CNS disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agulhon C, Sun MY, Murphy T, Myers T, Lauderdale K et al (2012) Calcium signaling and gliotransmission in normal vs. reactive astrocytes. Front Pharmacol 3:1–16

    Article  CAS  Google Scholar 

  • Ahmed SM, Rzigalinski BA, Willoughby KA, Sitterding HA, Ellis EF (2000) Stretch-induced injury alters mitochondrial membrane potential and cellular ATP in cultured astrocytes and neurons. J Neurochem 74:1951–1960

    Article  CAS  PubMed  Google Scholar 

  • Amiry-Moghaddam M, Williamson A, Palomba M, Eid T, de Lanerolle NC et al (2003) Delayed K+ clearance associated with aquaporin-4 mislocalization: phenotypic defects in brains of alpha-syntrophin-null mice. Proc Natl Acad Sci USA 100:13615–13620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Annegers JF, Hauser A, Coan SP, Rocca WA (1998) A population-based study of seizures after traumatic brain injury. N Eng J Med 338:20–24

    Article  CAS  Google Scholar 

  • Araque A, Parpura V, Sanzgiri RP, Haydon PG (1998) Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons. Eur J Neurosci 10:2129–2142

    Article  CAS  PubMed  Google Scholar 

  • Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22:208–215

    Article  CAS  PubMed  Google Scholar 

  • Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (2004) Potassium model for slow (2–3 Hz) in vivo neocortical paroxysmal oscillations. J Neurophysiol 92:1116–1132

    Article  CAS  PubMed  Google Scholar 

  • Beattie EC, Stellwagen D, Morishita W, Bresnahan JC, Ha BK et al (2002) Control of synaptic strength by glial TNFα. Science 295:2282–2285

    Article  CAS  PubMed  Google Scholar 

  • Binder DK, Yao X, Sick TJ, Verkman AS, Manley GT (2006) Increased seizure duration and slowed potassium kinetics in mice lacking aquaporin-4 water channels. GLIA 53:631–636

    Article  PubMed  Google Scholar 

  • Buzsaki G, Wang XJ (2012) Mechanisms of gamma oscillations. Ann Rev Neurosci 35:203–225

    Article  CAS  PubMed  Google Scholar 

  • Clasadonte J, Dong J, Hines DJ, Haydon PG (2013) Astrocyte control of synaptic NMDA receptors contributes to the progressive development of temporal lobe epilepsy. Proc Natl Acad Sci USA 110:17540–17545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cotter DR, Pariante CM, Everall IP (2001) Glial cell abnormalities in major psychiatric disorders: the evidence and implications. Brain Res Bull 55:585–595

    Article  CAS  PubMed  Google Scholar 

  • De Pittà M, Volman V, Berry H, Ben-Jacob E (2011) A tale of two stories: astrocyte regulation of synaptic depression and facilitation. PLoS Comput Biol 7:e1002293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Pittà M, Volman V, Berry H, Parpura V, Volterra A et al (2012) Computational quest for understanding the role of astrocyte signaling in synaptic transmission and plasticity. Front Comput Neurosci 6:98

    Article  PubMed  PubMed Central  Google Scholar 

  • Djukic B, Casper KB, Philpot BD, Chin LS, McCarthy KD (2007) Conditional knock-out of Kir4.1 leads to glial membrane depolarization, inhibition of potassium and glutamate uptake, and enhanced short-term synaptic potentiation. J Neurosci 27:11354–11365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feeney DM, Walker AE (1979) The prediction of posttraumatic epilepsy. A mathematical approach. Arch Neurol 36:8–12

    Article  CAS  PubMed  Google Scholar 

  • Fisher RS, Pedley TA, Moody WJ, Prince DA (1976) The role of extracellular potassium in hippocampal epilepsy. Arch Neurol 33:76–83

    Article  CAS  PubMed  Google Scholar 

  • Florence CM, Baillie LD, Mulligan SJ (2012) Dynamic volume changes in astrocytes are an intrinsic phenomenon mediated by bicarbonate ion flux. PLoS ONE 7:e51124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frankenhaeuser B, Hodgkin AL (1956) The after-effects of impulses in the giant nerve fibers of Loligo. J Physiol 131:341–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fritschy JM (2008) Epilepsy, E/I balance and GABAa receptor plasticity. Front Mol Neurosci 1:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Frohlich F, Bazhenov M, Iragui-Madoz V, Sejnowski TJ (2008a) Potassium dynamics in the epileptic cortex: new insights on an old topic. Neuroscientist 14:422–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frohlich F, Bazhenov M, Sejnowski TJ (2008b) Pathological effects of homeostatic synaptic scaling on network dynamics in diseases of the cortex. J Neurosci 28:1709–1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Gonzalo M, Losi G, Chiavegato A, Zonta M, Cammarota M et al (2010) An excitatory loop with astrocytes contributes to drive neurons to seizure threshold. PLoS Comput Biol 8:e1000352

    Article  CAS  Google Scholar 

  • Grand L, Ftomov S, Timofeev I (2013) Long-term synchronized electrophysiological and behavioral wireless monitoring of freely moving animals. J Neurosci Meth 212:237–241

    Article  Google Scholar 

  • Haydon PG (2001) GLIA: listening and talking to the synapse. Nat Rev Neurosci 2:185–193

    Article  CAS  PubMed  Google Scholar 

  • Houweling AR, Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (2005) Homeostatic synaptic plasticity can explain post-traumatic epileptogenesis in chronically isolated neocortex. Cereb Cortex 15:834–845

    Article  PubMed  Google Scholar 

  • Janigro D, Gasparini S, D’Ambrosio R, McKhann G, DiFrancesco D (1997) Reduction of K + uptake in glia prevents long-term depression maintenance and causes epileptiform activity. J Neurosci 17:2813–2824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin BJ, Zhang H, Binder DK, Verkman AS (2012) Aquaporin-4-dependent K+ and water transport modeled in brain extracellular space following neuroexcitation. J Gen Physiol 141:119–132

    Article  CAS  Google Scholar 

  • Lalo U, Palygin O, Rasooli-Nejad S, Andrew J, Haydon PG et al (2014) Exocytosis of ATP from astrocytes modulates phasic and tonic inhibition in the neocortex. PLoS Biol 12:e1001747

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee HS, Ghetti A, Pinto-Duarte A, Wang X, Dziewczapolski G et al (2014) Astrocytes contribute to gama oscillations and recognition memory. Proc Natl Acad Sci USA 111:E3343–E3352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • London M, Hausser M (2005) Dendritic computation. Ann Rev Neurosci 28:503–532

    Article  CAS  PubMed  Google Scholar 

  • Lothman EW, Somjen GG (1976) Functions of primary afferents and responses of extracellular K + during spinal epileptiform seizures. Electroencephalogr Clin Neurophysiol 41:253–267

    Article  CAS  PubMed  Google Scholar 

  • McCormick DA, Contreras D (2001) On the cellular and network bases of epileptic seizures. Ann Rev Physiol 63:815–846

    Article  CAS  Google Scholar 

  • McCrory P (2011) Sports concussion and the risk of chronic neurological impairment. Clin J Sport Med 21:6–12

    Article  PubMed  Google Scholar 

  • Metea MR, Kofuji P, Newman EA (2007) Neurovascular coupling is not mediated by potassium siphoning from glial cells. J Neurosci 27:2468–2471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mothet JP, Pollegioni L, Ouanounou G, Martineau M, Fossier P et al (2005) Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter D-serine. Proc Natl Acad Sci USA 102:5606–5611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadkarni S, Jung P (2003) Spontaneous oscillations of dressed neurons: a new mechanism for epilepsy? Phys Rev Lett 91:1–4

    Article  CAS  Google Scholar 

  • Nadkarni S, Bartol TM, Sejnowski TJ, Levine H (2010) Modelling vesicular release at hippocampal synapses. PLoS Comp Biol 6:e1000983

    Article  CAS  Google Scholar 

  • Nadkarni S, Bartol TM, Stevens CF, Sejnowski TJ, Levine H (2012) Short-term plasticity constrains spatial organization of a hippocampal presynaptic terminal. Proc Natl Acad Sci USA 109:14657–14662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagelhus EA, Mathiisen TM, Ottersen OP (2004) Aquaporin-4 in the central nervous system: cellular and subcellular distribution and coexpression with KIR4.1. Neurosci 129:905–913

    Article  CAS  Google Scholar 

  • Neary JT, Kang Y, Willoughby KA, Ellis EF (2002) Activation of extracellular signal-regulated kinase by stretch-induced injury in astrocytes involves extracellular ATP and P2 purinergic receptors. J Neurosci 23:2348–2356

    Article  Google Scholar 

  • Ng LJ, Gibbons M, Phohomsiri P, Volman V, Cui J et al (2014) Investigation of the concussion mechanism: an end-to-end model that translates external measures to internal neurologic injury, Tampa, FL

    Google Scholar 

  • Oberheim NA, Tian GF, Han X, Peng W, Takano T et al (2008) Loss of astrocytic domain organization in the epileptic brain. J Neurosci 28:3264–3276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliet SHR, Mothet JP (2009) Regulation of N-methyl-D-aspartate receptors by astrocytic D-serine. Neuroscience 158:275–283

    Article  CAS  PubMed  Google Scholar 

  • Østby I, Øyehaug L, Einevoll GT, Nagelhus EA, Plahte E et al (2009) Astrocytic mechanisms explaining neural-activity-induced shrinkage of extraneuronal space. PLOS Comp Biol 5:e1000272

    Article  CAS  Google Scholar 

  • Øyehaug L, Østby I, Lloyd CM, Omholt SW, Einevoll GT (2011) Dependence of spontaneous neuronal firing and depolarization block on astroglial membrane transport mechanisms. J Comput Neurosci

    Google Scholar 

  • Parpura V, Haydon PG (2000) Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons. Proc Natl Acad Sci USA 97:8629–8634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parpura V, Zorec R (2010) Gliotransmission: exocytotic release from astrocytes. Brain Res Rev 63:83–92

    Article  CAS  PubMed  Google Scholar 

  • Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S et al (1994) Glutamate-mediated astrocyte-neuron signaling. Nature 369:744–747

    Article  CAS  PubMed  Google Scholar 

  • Paulson OB, Newman EA (1987) Does the release of potassium from astrocyte endfeet regulate cerebral blood flow? Science 237:896–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perea G, Araque A (2007) Astrocytes potentiate transmitter release at single hippocampal synapses. Science 317:1083–1086

    Article  CAS  PubMed  Google Scholar 

  • Rigg JL, Moonery SR (2011) Concussions and the military: issues specific to service members. PM R 3:S380–S386

    Article  PubMed  Google Scholar 

  • Rzigalinski BA, Weber JT, Willoughby KA, Ellis EF (1998) Intracellular free calcium dynamics in stretch-induced astrocytes. J Neurochem 70:2377–2385

    Article  CAS  PubMed  Google Scholar 

  • Savin C, Triesch J, Meyer-Hermann M (2009) Seizure induction by glia-mediated synaptic scaling. J R Soc Interface 6:655–668

    Article  CAS  PubMed  Google Scholar 

  • Seifert G, Schilling K, Steinhauser C (2006) Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat Rev Neurosci 7:194–206

    Article  CAS  PubMed  Google Scholar 

  • Sibille J, Duc KD, Holcman D, Rouach N (2015) The neuroglial potassium cycle during neurotransmission: role of Kir4.1 channels. PLoS Comp Biol 11: e1004137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Silchenko AN, Tass PA (2008) Computational modeling of paroxysmal depolarization shifts in neurons induced by glutamate release from astrocytes. Biol Cyber 98:61–74

    Article  Google Scholar 

  • Simard M, Nedergaard M (2004) The neurobiology of glia in the context of water and ion homeostasis. Neurosci 129:877–896

    Article  CAS  Google Scholar 

  • Slemmer JE, Weber JT (2005) The extent of damage following repeated injury to cultured hippocampal cells is dependent on the severity of insult and inter-injury interval. Neurobiol Dis 18:421–431

    Article  PubMed  Google Scholar 

  • Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32:638–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solenov E, Watanabe H, Manley GT, Verkman AS (2004) Sevenfold-reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice, measured by a fluorescence quenching method. Am J Physiol Cell Physiol 286:C426–C432

    Article  CAS  PubMed  Google Scholar 

  • Somjen GG, Kager H, Wadman WJ (2009) Computer simulations of neuron-glial interactions mediated by ion flux. J Comput Neurosci 25:349–365

    Article  Google Scholar 

  • Steinmetz CC, Turrigiano GG (2010) Tumor necrosis factor-α signaling maintains the ability of cortical synapses to express synaptic scaling. J Neurosci 30:14685–14690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stellwagen D, Malenka RC (2006) Synaptic scaling mediated by glial TNFα. Nature 440:1054–1059

    Article  CAS  PubMed  Google Scholar 

  • Sun Q, Turrigiano GG (2011) PSD-95 and PSD-93 play critical but distinct roles in synaptic scaling up and down. J Neurosci 31:6800–6808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Temkin NR, Haglund MM, Winn HR (1995) Causes, prevention, and treatment of post-traumatic epilepsy. New Horiz 3:518–522

    CAS  PubMed  Google Scholar 

  • Theye F, Mueller KA (2004) “Heads up”: concussions in high school sports. Clin Med Res 2:165–171

    Article  PubMed  PubMed Central  Google Scholar 

  • Timofeev I, Bazhenov M, Avramescu S, Nita DA (2010) Posttraumatic epilepsy: the roles of synaptic plasticity. Neuroscientist 16:19–27

    Article  PubMed  Google Scholar 

  • Timofeev I, Bazhenov M, Seigneur J, Sejnowski TJ (2012) Neuronal synchronization and thalamocortical rhythms in sleep, wake, and epilepsy. In: Noebels JLAM, Rogawski MA, Olsen RW, Delgado-Escueta AV (eds) Jasper’s basic mechanisms of the epilepsies. Oxford University Press, New York, pp 157–175

    Chapter  Google Scholar 

  • Topolnik L, Steriade M, Timofeev I (2003) Partial cortical deafferentation promotes development of paroxysmal activity. Cereb Cortex 13:883–893

    Article  PubMed  Google Scholar 

  • Tsodyks MV, Markram H (1997) The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc Natl Acad Sci USA 94:719–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turrigiano GG (1999) Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends Neurosci 22:221–227

    Article  CAS  PubMed  Google Scholar 

  • Volman V, Ng LJ (2014) Primary paranode demyelination modulates slowly developing axonal depolarization in a model of axonal injury. J Comput Neurosci 37:439–457

    Article  PubMed  Google Scholar 

  • Volman V, Ben-Jacob E, Levine H (2007) The astrocyte as a gatekeeper of synaptic information transfer. Neural Comput 19:303–326

    Article  PubMed  Google Scholar 

  • Volman V, Bazhenov M, Sejnowski TJ (2011a) Pattern of trauma determines the threshold for epileptic activity in a model of cortical deafferentation. Proc Natl Acad Sci USA 108:15402–15407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volman V, Sejnowski TJ, Bazhenov M (2011b) Topological basis of epileptogenesis in a model of severe cortical trauma. J Neurophysiol 106:1933–1942

    Article  PubMed  PubMed Central  Google Scholar 

  • Volman V, Behrens MM, Sejnowski TJ (2011c) Downregulation of parvalbumin at cortical GABA synapses reduces network gamma oscillatory activity. J Neurosci 31:18137–18148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volman V, Bazhenov M, Sejnowski TJ (2013) Divide and conquer: functional segregation of synaptic inputs by astrocytic microdomains could alleviate paroxysmal activity following brain trauma. PLoS Com Biol 9:e1002856

    Article  CAS  Google Scholar 

  • Walz W (2000) Role of astrocytes in the clearance of excess extracellular potassium. Neurochem Intl 36:291–300

    Article  CAS  Google Scholar 

  • Wei Y, Ullah G, Ingram J, Schiff SJ (2014a) Oxygen and seizure dynamics: II. Computational modeling. J Neurophysiol 112:213–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Y, Ullah G, Schiff SJ (2014b) Unification of neuronal spikes, seizures, and spreading depression. J Neurosci 34:11733–11743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie AX, Sun MY, Murphy T, Lauderdale K, Tiglao E et al (2012) Bidirectional scaling of astrocytic metabotropic glutamate receptor signaling following long-term changes in neuronal firing rates. PLoS ONE 7:e49637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang JM, Wang HK, Ye CQ, Ge W, Chen Y et al (2003) ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron 40:971–982

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

MB acknowledges financial support through the research grants from the Office of Naval Research (MURI, N000141310672) and National Institutes of Health (R01 EB009282 and R01 MH099645). The work of VV was sponsored by the US Army Medical Research and Materiel Command under contract W81XWH-11-D-0011. This document is cleared for all audiences for OPSEC purposes. Cleared for public release 09/25/2015. The opinions or assertions contained herein are private views of the authors and are not to be construed as official or as reflecting views of the Department of the Army or the Department of Defense. PAO reviewed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladislav Volman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Volman, V., Bazhenov, M. (2019). Computational Models of Pathophysiological Glial Activation in CNS Disorders. In: De Pittà, M., Berry, H. (eds) Computational Glioscience. Springer Series in Computational Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-030-00817-8_11

Download citation

Publish with us

Policies and ethics