Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: Fully-convolutional siamese networks for object tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 850–865. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_56
CrossRef
Google Scholar
Boddeti, V.N., Kanade, T., Kumar, B.V.K.V.: Correlation filters for object alignment. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2291–2298 (2013)
Google Scholar
Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: IEEE Computer Vision and Pattern Recognition, pp. 2544–2550 (2010)
Google Scholar
Danelljan, M., Hager, G., Khan, F.S., Felsberg, M.: Convolutional features for correlation filter based visual tracking. In: IEEE International Conference on Computer Vision Workshop, pp. 621–629 (2015)
Google Scholar
Danelljan, M., Häger, G., Khan, F.S., Felsberg, M.: Accurate scale estimation for robust visual tracking. In: British Machine Vision Conference, pp. 65.1–65.11 (2014)
Google Scholar
Danelljan, M., Robinson, A., Shahbaz Khan, F., Felsberg, M.: Beyond correlation filters: learning continuous convolution operators for visual tracking. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 472–488. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_29
CrossRef
Google Scholar
Felzenszwalb, P.F., Girshick, R., Mcallester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2010)
CrossRef
Google Scholar
Held, D., Thrun, S., Savarese, S.: Learning to track at 100 FPS with deep regression networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 749–765. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_45
CrossRef
Google Scholar
Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2015)
CrossRef
Google Scholar
Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: Exploiting the circulant structure of tracking-by-detection with kernels. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 702–715. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_50
CrossRef
Google Scholar
Huang, C.M., Wang, S.C., Chang, C.F., Huang, C.I.: An air combat simulator in the virtual reality with the visual tracking system and force-feedback components. In: IEEE International Conference on Control Applications, vol. 1, pp. 515–520 (2004)
Google Scholar
Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: Squeezenet: Alexnet-level accuracy with 50x fewer parameters and \(<\)0.5MB model size (2016). arXiv: Computer Vision and Pattern Recognition
Jian, M., Lam, K.M., Dong, J., Shen, L.: Visual-patch-attention-aware saliency detection. IEEE Trans. Cybern. 45(8), 1575–1586 (2015)
CrossRef
Google Scholar
Jian, M., Qi, Q., Dong, J., Sun, X., Sun, Y., Lam, K.: Saliency detection using quaternionic distance based weber local descriptor and level priors. Multimedia Tools and Applications, pp. 1–18 (2017)
Google Scholar
Jian, M., Qi, Q., Dong, J., Yin, Y., Lam, K.M.: Integrating qdwd with pattern distinctness and local contrast for underwater saliency detection. J. Vis. Commun. Image Represent. 53, 31–41 (2018)
CrossRef
Google Scholar
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: International Conference on Neural Information Processing Systems, pp. 1097–1105 (2012)
Google Scholar
Li, Y., Zhu, J.: A scale adaptive kernel correlation filter tracker with feature integration. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8926, pp. 254–265. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16181-5_18
CrossRef
Google Scholar
Ma, C., Huang, J.B., Yang, X., Yang, M.H.: Hierarchical convolutional features for visual tracking. In: IEEE International Conference on Computer Vision, pp. 3074–3082 (2015)
Google Scholar
Matthias, M., Neil, S., Ghanem, B.: Context-aware correlation filter tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (2017)
Google Scholar
Nam, H., Han, B.: Learning multi-domain convolutional neural networks for visual tracking. In: Computer Vision and Pattern Recognition, pp. 4293–4302 (2016)
Google Scholar
Papanikolopoulos, N.P., Khosla, P.K., Kanade, T.: Visual tracking of a moving target by a camera mounted on a robot: a combination of control and vision. IEEE Trans. Robot. Autom. 9(1), 14–35 (1993)
CrossRef
Google Scholar
Qi, Y., et al.: Hedged deep tracking. In: Computer Vision and Pattern Recognition, pp. 4303–4311 (2016)
Google Scholar
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: International Conference on Neural Information Processing Systems, pp. 91–99 (2015)
Google Scholar
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M.S.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)
MathSciNet
CrossRef
Google Scholar
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Computer Science (2014)
Google Scholar
Smeulders, A.W.M., Chu, D.M., Cucchiara, R., Calderara, S., Dehghan, A., Shah, M.: Visual tracking: an experimental survey. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1442–1468 (2014)
CrossRef
Google Scholar
Song, Y., Ma, C., Gong, L., Zhang, J., Lau, R.W.H., Yang, M.H.: Crest: convolutional residual learning for visual tracking. In: IEEE International Conference on Computer Vision, pp. 2574–2583 (2017)
Google Scholar
Valmadre, J., Bertinetto, L., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: End-to-end representation learning for correlation filter based tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (2017)
Google Scholar
Wu, Y., Lim, J., Yang, M.H.: Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1834–1848 (2015)
CrossRef
Google Scholar
Wu, Y., Lim, J., Yang, M.H.: Online object tracking: A benchmark. In: IEEE Computer Vision and Pattern Recognition, pp. 2411–2418 (2013)
Google Scholar