Skip to main content

CRNet: Classification and Regression Neural Network for Facial Beauty Prediction

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing – PCM 2018 (PCM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11166))

Included in the following conference series:

Abstract

Facial beauty prediction is a challenging problem in computer vision and multimedia fields, due to the variant pose and diverse conditions. In this paper, we introduce “soft label” for each annotated facial image, and propose a novel neural network–classification and regression network (CRNet) with different branches, to simultaneously process a classification and a regression task. Besides, weighted mean squared error (MSE) and cross entropy (CE) are used as the loss function, which is robust to outliers. CRNet achieves state-of-the-art performance on SCUT-FBP and ECCV HotOrNot dataset. Experimental results demonstrate the effectiveness of the proposed method and clarify the most important facial regions for facial beauty perception.

This work was primarily supported by Foundation Research Funds for the Central Universities (Program No. 2662017JC049) and State Scholarship Fund (NO. 261606765054).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Perrett, D.I., May, K.A., Yoshikawa, S.: Facial shape and judgements of female attractiveness. Nature 368(6468), 239–42 (1994)

    Article  Google Scholar 

  2. Rothe, R., Timofte, R., Van Gool, L.: Some like it hot-visual guidance for preference prediction. In: Proceedings CVPR 2016, pp. 1–9 (2016)

    Google Scholar 

  3. Zhang, D., Chen, F., Xu, Y.: Computer Models for Facial Beauty Analysis. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32598-9

    Book  Google Scholar 

  4. Xie, D., Liang, L., Jin, L., Xu, J., Li, M.: DScut-fbp: a benchmark dataset for facial beauty perception. In: 2015 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1821–1826. IEEE (2015)

    Google Scholar 

  5. Gray, D., Yu, K., Xu, W., Gong, Y.: Predicting Facial Beauty without Landmarks. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6316, pp. 434–447. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15567-3_32

    Chapter  Google Scholar 

  6. Chen, F., Xiao, X., Zhang, D.: Data-driven facial beauty analysis: prediction, retrieval and manipulation. IEEE Trans. Affect. Comput. 9(2), 205–216 (2018)

    Article  Google Scholar 

  7. Eisenthal, Y., Dror, G., Ruppin, E.: Facial attractiveness: beauty and the machine. Neural Comput. 18(1), 119–142 (2006)

    Article  Google Scholar 

  8. Huang, G.B., Lee, H., Learned-Miller, E.: Learning hierarchical representations for face verification with convolutional deep belief networks. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2518–2525. IEEE (2012)

    Google Scholar 

  9. Kagian, A., Dror, G., Leyvand, T., Cohen-Or, D., Ruppin, E.: A humanlike predictor of facial attractiveness. In: Advances in Neural Information Processing Systems, pp. 649–656 (2007)

    Google Scholar 

  10. Rothe, R., Timofte, R., Van Gool, L.: Deep expectation of real and apparent age from a single image without facial landmarks. Int. J. Comput. Vis. 126(2–4), 144–157 (2018)

    Article  MathSciNet  Google Scholar 

  11. Zhang, D., Zhao, Q., Chen, F.: Quantitative analysis of human facial beautyusing geometric features. Pattern Recognit. 44(4), 940–950 (2011)

    Article  Google Scholar 

  12. Wang, S., Shao, M., Fu, Y.: Attractive or not?: beauty prediction with attractiveness-aware encoders and robust late fusion. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 805–808. ACM (2014)

    Google Scholar 

  13. Xu, J., Jin, L., Liang, L., Feng, Z., Xie, D., Mao, H.: Facial attractiveness prediction using psychologically inspired convolutional neural network (PI-CNN). In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1657–1661 (2017)

    Google Scholar 

  14. Ranjan, R., Patel, V.M., Chellappa, R.: Hyperface: a deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition. IEEE Trans. Pattern Anal. Mach. Intell. 1 (2018)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on CVPR, pp. 770–778 (2016)

    Google Scholar 

  16. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Advances in Neural Information Processing Systems, pp. 3320–3328 (2014)

    Google Scholar 

  17. Donahue, J., et al.: Decaf: a deep convolutional activation feature for generic visual recognition. In: International Conference on Machine Learning, pp. 647–655 (2014)

    Google Scholar 

  18. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  19. Gebru, T., Hoffman, J., Fei-Fei, L.: Fine-grained recognition in the wild: a multi-task domain adaptation approach. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 1358–1367. IEEE (2017)

    Google Scholar 

  20. King, D.E.: Dlib-ml: a machine learning toolkit. JMLR.org (2009)

    Google Scholar 

  21. Paszke, A., Gross, S., Chintala, S., Chanan, G.: Tensors and dynamic neural networks in python with strong GPU acceleration, Pytorch (2017)

    Google Scholar 

  22. Ioffe, I., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015)

    Google Scholar 

  23. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  25. Liu, S., Fan, Y.-Y., Guo, Z., Samal, A., Ali, A.: A landmark-based data-driven approach on 2.5D facial attractiveness computation. Neurocomputing 238, 168–178 (2017)

    Article  Google Scholar 

  26. Khan, S.H., Hayat, M., Bennamoun, M., Sohel, F.A., Togneri, R.: Costsensitive learning of deep feature representations from imbalanced data. IEEE Trans. Neural Netw. Learn. Syst. 29(8), 3573–3587 (2018)

    Article  Google Scholar 

  27. Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: Sphereface: deep hypersphere embedding for face recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, p. 1 (2017)

    Google Scholar 

  28. Yang, H., Ciftci, U., Yin, L.: Facial expression recognition by de-expression residue learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2168–2177 (2018)

    Google Scholar 

  29. Yang, T.-Y., Huang, Y.-H., Lin, Y.-Y., Hsiu, P.-C., Chuang, Y.-Y.: Ssr-net: a compact soft stagewise regression network for age estimation. In: IJCAI, pp. 1078–1084 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhai Xiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, L., Xiang, J., Yuan, X. (2018). CRNet: Classification and Regression Neural Network for Facial Beauty Prediction. In: Hong, R., Cheng, WH., Yamasaki, T., Wang, M., Ngo, CW. (eds) Advances in Multimedia Information Processing – PCM 2018. PCM 2018. Lecture Notes in Computer Science(), vol 11166. Springer, Cham. https://doi.org/10.1007/978-3-030-00764-5_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00764-5_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00763-8

  • Online ISBN: 978-3-030-00764-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics