Skip to main content

Optimal Feature Selection for Saliency Seed Propagation in Low Contrast Images

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing – PCM 2018 (PCM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11166))

Included in the following conference series:

Abstract

Salient object detection can substantially facilitate a wide range of applications. Although significant improvements have been made in recent years, low contrast image still pose great challenges to current methods due to its low signal to noise ratio property. In this paper, an optimal feature selection based saliency seed propagation method is presented to detect salient objects in low contrast images. The key idea of the proposed approach is to hierarchically refine the saliency map guided by adaptively selecting the optimal features in low contrast images recursively. Multiscale superpixel segmentation is firstly utilized to suppress background interference. Then, the initial saliency map can be generated via global contrast and spatial relationship. Local and global fitness are finally utilized to optimize the resulting saliency maps. Extensive experimental evaluations on four datasets demonstrate that the proposed model outperforms 15 state-of-the-art methods in terms of efficiency and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The nighttime image (NI) dataset of this paper can be downloaded from https://drive.google.com/open?id=0BwVQK2zsuAQwX2hXbnc3ZVMzejQ.

  2. 2.

    More detected saliency maps of various models on four datasets can be downloaded from https://drive.google.com/open?id=0BwVQK2zsuAQwSENvVVR1NUJzVGc.

References

  1. Wang, L., Hua, G., Sukthankar, R., Xue, J., Niu, Z., Zheng, N.: Video object discovery and co-segmentation with extremely weak supervision. IEEE Trans. Pattern Anal. Mach. Intell. 39(10), 2074–2088 (2017)

    Article  Google Scholar 

  2. Yang, X., Qian, X., Xue, Y.: Scalable mobile image retrieval by exploring contextual saliency. IEEE Trans. Image Process. 24(6), 1709–1721 (2015)

    Article  MathSciNet  Google Scholar 

  3. Li, S., Xu, M., Ren, Y., Wang, Z.: Closed-form optimization on saliency-guided image compression for HEVC-MSP. IEEE Trans. Multimed. 99, 1–16 (2017)

    Google Scholar 

  4. Gao, L., Wang, X., Xu, Y., Zhang, Q.: Spectrum trading in cognitive radio networks: a contract-theoretic modeling approach. IEEE J. Sel. Areas Commun. 29(4), 843–855 (2011)

    Article  Google Scholar 

  5. Wang, X., Huang, W., Wang, S., Zhang, J., Hu, C.: Delay and capacity tradeoff analysis for motioncast. IEEE/ACM Trans. Netw. (TON) 19(5), 1354–1367 (2011)

    Article  Google Scholar 

  6. Gao, L., Xu, Y., Wang, X.: MAP: multiauctioneer progressive auction for dynamic spectrum access. IEEE Trans. Mobile Comput. 10(8), 1144–1161 (2011)

    Article  Google Scholar 

  7. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  8. Goferman, S., Zelnik-Manor, L., Tal, A.: Context-aware saliency detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(10), 1915–1926 (2012)

    Article  Google Scholar 

  9. Cheng, M.-M., Mitra, N.J., Huang, X., Torr, P.H.S., Hu, S.-M.: Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 569–582 (2015)

    Article  Google Scholar 

  10. Xu, X., Mu, N., Chen, L., Zhang, X.: Hierarchical salient object detection model using contrast based saliency and color spatial distribution. Multimed. Tools Appl. 75(5), 2667–2679 (2016)

    Article  Google Scholar 

  11. Kim, J., Han, D., Tai, Y.-W., Kim, J.: Salient region detection via high-dimensional color transform and local spatial support. IEEE Trans. Image Process. 25(1), 9–23 (2016)

    Article  MathSciNet  Google Scholar 

  12. Hu, P., Wang, W., Zhang, C., Lu, K.: Detecting salient objects via color and texture compactness hypotheses. IEEE Trans. Image Process. 25(10), 4653–4664 (2016)

    Article  MathSciNet  Google Scholar 

  13. Huang, X., Zhang, Y.-J.: 300-FPS salient object detection via minimum directional contrast. IEEE Trans. Image Process. 26(9), 4243–4254 (2017)

    Article  MathSciNet  Google Scholar 

  14. Xu, X., Mu, N., Zhang, H., Fu, X.: Salient object detection from distinctive features in low contrast images. In: IEEE International Conference on Image Processing, pp. 3126–3130 (2015)

    Google Scholar 

  15. Qu, L., He, S., Zhang, J., Tian, J., Tang, Y., Yang, Q.: RGBD salient object detection via deep fusion. IEEE Trans. Image Process. 26(5), 2274–2285 (2017)

    Article  MathSciNet  Google Scholar 

  16. Luo, Z., Mishra, A., Achkar, A., Eichel, J., Li, S., Jodoin, P.-M.: Non-local deep features for salient object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 6609–6617 (2017)

    Google Scholar 

  17. Mu, N., Xu, X., Zhang, X., Zhang, H.: Salient object detection using a covariance-based CNN model for low-contrast images. Neural Comput. Appl. 29(8), 181–192 (2018)

    Article  Google Scholar 

  18. Peng, H., Li, B., Ling, H., Hu, W., Xiong, W., Maybank, S.J.: Salient object detection via structured matrix decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 818–832 (2017)

    Article  Google Scholar 

  19. Huang, F., Qi, J., Lu, H., Zhang, L., Ruan, X.: Salient object detection via multiple instance learning. IEEE Trans. Image Process. 26(4), 1911–1922 (2017)

    Article  MathSciNet  Google Scholar 

  20. Wang, X., Ma, H., Chen, X., You, S.: Edge preserving and multi-scale contextual neural network for salient object detection. IEEE Trans. Image Process. 27(1), 121–134 (2018)

    Article  MathSciNet  Google Scholar 

  21. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  22. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  Google Scholar 

  23. Liu, T., Sun, J., Zheng, N.-N., Tang, X., Shum, H.-Y.: Learning to detect a salient object. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)

    Google Scholar 

  24. Movahedi, V., Elder, J. H.: Design and perceptual validation of performance measures for salient object segmentation, In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 49–56 (2010)

    Google Scholar 

  25. Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.-H.: Saliency detection via graph-based manifold ranking. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3166–3173 (2013)

    Google Scholar 

  26. Hou, X., Zhang, L.: Saliency detection: a spectral residual approach. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)

    Google Scholar 

  27. Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1597–1604 (2009)

    Google Scholar 

  28. Murray, N., Vanrell, M., Otazu, X., Parraga, C.A.: Saliency estimation using a non-parametric low-level vision model. In: IEEE Computer Conference on Computer Vision and Pattern Recognition, pp. 433–440 (2011)

    Google Scholar 

  29. Hou, X., Harel, J., Koch, C.: Image signature: highlighting sparse salient regions. IEEE Trans. Pattern Anal. Mach. Intell. 34(1), 194–201 (2012)

    Article  Google Scholar 

  30. Shen, X., Wu, Y.: A unified approach to salient object detection via low rank matrix recovery. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 853–860 (2012)

    Google Scholar 

  31. Margolin, R., Zelnik-Manor L., Tal, A.: What makes a patch distinct? In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1139–1146 (2013)

    Google Scholar 

  32. Zhu, W., Liang, S., Wei, Y., Sun, J.: Saliency optimization from robust background detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2814–2821 (2014)

    Google Scholar 

  33. Tong, N., Lu, H., Yang, M.: Salient object detection via bootstrap learning. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1884–1892 (2015)

    Google Scholar 

  34. Jiang, P., Vasconcelos, N., Peng, J.: Generic promotion of diffusion-based salient object detection. In: IEEE International Conference on Computer Vision, pp. 217–225 (2015)

    Google Scholar 

  35. Zhang, J., Wang, M., Zhang, S., Li, X., Wu, X.: Spatiochromatic context modeling for color saliency analysis. IEEE Trans. Neural Netw. Learn. Syst. 27(6), 1177–1189 (2016)

    Article  MathSciNet  Google Scholar 

  36. Margolin, R., Zelnik-Manor, L., Tal, A.: How to evaluate foreground maps? In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2014)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the Natural Science Foundation of China (61602349, 61440016, and 61273225), Hubei Chengguang Talented Youth Development Foundation (2015B22), and the Educational Research Project from the Educational Commission of Hubei Province (2016234).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mu, N., Xu, X., Zhang, X. (2018). Optimal Feature Selection for Saliency Seed Propagation in Low Contrast Images. In: Hong, R., Cheng, WH., Yamasaki, T., Wang, M., Ngo, CW. (eds) Advances in Multimedia Information Processing – PCM 2018. PCM 2018. Lecture Notes in Computer Science(), vol 11166. Springer, Cham. https://doi.org/10.1007/978-3-030-00764-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00764-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00763-8

  • Online ISBN: 978-3-030-00764-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics