Skip to main content

Structural Subnetwork Evolution Across the Life-Span: Rich-Club, Feeder, Seeder

Part of the Lecture Notes in Computer Science book series (LNIP,volume 11083)

Abstract

The impact of developmental and aging processes on brain connectivity and the connectome has been widely studied. Network theoretical measures and certain topological principles are computed from the entire brain, however there is a need to separate and understand the underlying subnetworks which contribute towards these observed holistic connectomic alterations. One organizational principle is the rich-club - a core subnetwork of brain regions that are strongly connected, forming a high-cost, high-capacity backbone that is critical for effective communication in the network. Investigations primarily focus on its alterations with disease and age. Here, we present a systematic analysis of not only the rich-club, but also other subnetworks derived from this backbone - namely feeder and seeder subnetworks. Our analysis is applied to structural connectomes in a normal cohort from a large, publicly available life-span study. We demonstrate changes in rich-club membership with age alongside a shift in importance from ’peripheral’ seeder to feeder subnetworks. Our results show a refinement within the rich-club structure (increase in transitivity and betweenness centrality), as well as increased efficiency in the feeder subnetwork and decreased measures of network integration and segregation in the seeder subnetwork. These results demonstrate the different developmental patterns when analyzing the connectome stratified according to its rich-club and the potential of utilizing this subnetwork analysis to reveal the evolution of brain architectural alterations across the life-span.

Keywords

  • Connectome
  • Subnetwork
  • Life-span
  • Rich-club
  • Diffusion

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-00755-3_15
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-00755-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

Notes

  1. 1.

    http://umcd.humanconnectomeproject.org.

References

  1. Ball, G., et al.: Rich-club organization of the newborn human brain. Proc. Nat. Acad. Sci. 111(20), 7456–7461 (2014)

    CrossRef  Google Scholar 

  2. Bassett, D.S., Meyer-Lindenberg, A., Achard, S., Duke, T., Bullmore, E.: Adaptive reconfiguration of fractal small-world human brain functional networks. Proc. Nat. Acad. Sci. 103(51), 19518–19523 (2006)

    CrossRef  Google Scholar 

  3. Batalle, D., Edwards, A.D., O’Muircheartaigh, J.: Annual research review: not just a small adult brain: understanding later neurodevelopment through imaging the neonatal brain. J. Child Psychol. Psychiatry 59(4), 350–371 (2018)

    CrossRef  Google Scholar 

  4. Batalle, D., et al.: Early development of structural networks and the impact of prematurity on brain connectivity. NeuroImage 149, 379–392 (2017)

    CrossRef  Google Scholar 

  5. Bonilha, L., et al.: Presurgical connectome and postsurgical seizure control in temporal lobe epilepsy. Neurology 81(19), 1704–1710 (2013)

    CrossRef  Google Scholar 

  6. Brown, J.A., Rudie, J.D., Bandrowski, A., Van Horn, J.D., Bookheimer, S.Y.: The UCLA multimodal connectivity database: a web-based platform for brain connectivity matrix sharing and analysis. Front. Neuroinf. 6, 28 (2012)

    CrossRef  Google Scholar 

  7. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10(3), 186 (2009)

    CrossRef  Google Scholar 

  8. Bullmore, E., Sporns, O.: The economy of brain network organization. Nat. Rev. Neurosci. 13(5), 336 (2012)

    CrossRef  Google Scholar 

  9. Cao, M., et al.: Topological organization of the human brain functional connectome across the lifespan. Dev. Cogn. Neurosci. 7, 76–93 (2014)

    CrossRef  Google Scholar 

  10. Chung, A.W., et al.: Characterising brain network topologies: a dynamic analysis approach using heat kernels. Neuroimage 141, 490–501 (2016)

    CrossRef  Google Scholar 

  11. Collin, G., Kahn, R.S., de Reus, M.A., Cahn, W., van den Heuvel, M.P.: Impaired rich club connectivity in unaffected siblings of schizophrenia patients. Schizophrenia Bull. 40(2), 438–448 (2013)

    CrossRef  Google Scholar 

  12. Craddock, R.C., James, G.A., Holtzheimer III, P.E., Hu, X.P., Mayberg, H.S.: A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum. Brain Mapp. 33(8), 1914–1928 (2012)

    CrossRef  Google Scholar 

  13. Daianu, M.: Rich club analysis in the Alzheimer’s disease connectome reveals a relatively undisturbed structural core network. Hum. Brain Mapp. 36(8), 3087–3103 (2015)

    CrossRef  Google Scholar 

  14. Dennis, E.L., et al.: Development of the rich club in brain connectivity networks from 438 adolescents & adults aged 12 to 30. In: Proceedings of IEEE International Symposium Biomed Imaging, pp. 624–627 (2013)

    Google Scholar 

  15. Grayson, D.S., et al.: Structural and functional rich club organization of the brain in children and adults. PLOS ONE 9(2), e88297 (2014)

    CrossRef  Google Scholar 

  16. Hagmann, P., et al.: Mapping the structural core of human cerebral cortex. PLoS Biol. 6(7), e159 (2008)

    CrossRef  Google Scholar 

  17. van den Heuvel, M.P., Kahn, R.S., Goñi, J., Sporns, O.: High-cost, high-capacity backbone for global brain communication. Proc. Nat. Acad. Sci. 109(28), 11372–11377 (2012)

    CrossRef  Google Scholar 

  18. Ingalhalikar, M., et al.: Sex differences in the structural connectome of the human brain. Proc. Nat. Acad. Sci. 111(2), 823–828 (2014)

    CrossRef  Google Scholar 

  19. Mori, S., Crain, B.J., Chacko, V.P., Van Zijl, P.C.: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann. Neurol. Official J. Am. Neurol. Assoc. Child Neurol. Soc. 45(2), 265–269 (1999)

    Google Scholar 

  20. Moussa, M.N., Steen, M.R., Laurienti, P.J., Hayasaka, S.: Consistency of network modules in resting-state fMRI connectome data. PloS One 7(8), e44428 (2012)

    CrossRef  Google Scholar 

  21. Nooner, K.B., et al.: The NKI-rockland sample: a model for accelerating the pace of discovery science in psychiatry. Front. Neurosci. 6, 152 (2012)

    CrossRef  Google Scholar 

  22. Opsahl, T., Colizza, V., Panzarasa, P., Ramasco, J.J.: Prominence and control: the weighted rich-club effect. Physical Rev. Lett. 101(16), 168702 (2008)

    CrossRef  Google Scholar 

  23. Ray, S., et al.: Structural and functional connectivity of the human brain in autism spectrum disorders and attention-deficit/hyperactivity disorder: a rich club-organization study. Hum. Brain Mapp. 35(12), 6032–6048 (2014)

    CrossRef  Google Scholar 

  24. Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3), 1059–1069 (2010)

    CrossRef  Google Scholar 

  25. Schirmer, M.D.: Developing brain connectivity: effects of parcellation scale on network analysis in neonates. Ph.D. thesis, King’s College London (2015)

    Google Scholar 

  26. Sporns, O.: Networks of the Brain. MIT press, Cambridge (2010)

    CrossRef  Google Scholar 

  27. Sporns, O.: Network attributes for segregation and integration in the human brain. Curr. Opin. Neurobiol. 23(2), 162–171 (2013)

    CrossRef  Google Scholar 

  28. Sporns, O., Chialvo, D.R., Kaiser, M., Hilgetag, C.C.: Organization, development and function of complex brain networks. Trends Cogn. Sci. 8(9), 418–425 (2004)

    CrossRef  Google Scholar 

  29. Sporns, O., Tononi, G., Kötter, R.: The human connectome: a structural description of the human brain. PLoS Comput. Biol. 1(4), e42 (2005)

    CrossRef  Google Scholar 

  30. Tymofiyeva, O., et al.: Towards the baby connectome: mapping the structural connectivity of the newborn brain. PloS One 7(2), e31029 (2012)

    CrossRef  Google Scholar 

  31. Van Den Heuvel, M.P., Sporns, O.: Rich-club organization of the human connectome. J. Neurosci. 31(44), 15775–15786 (2011)

    CrossRef  Google Scholar 

  32. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393(6684), 440 (1998)

    CrossRef  Google Scholar 

  33. Zalesky, A., Fornito, A., Bullmore, E.T.: Network-based statistic: identifying differences in brain networks. Neuroimage 53(4), 1197–1207 (2010)

    CrossRef  Google Scholar 

  34. Zhao, T., et al.: Age-related changes in the topological organization of the white matter structural connectome across the human lifespan. Hum. Brain Mapp. 36(10), 3777–3792 (2015)

    CrossRef  Google Scholar 

Download references

Funding

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 753896.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus D. Schirmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Schirmer, M.D., Chung, A.W. (2018). Structural Subnetwork Evolution Across the Life-Span: Rich-Club, Feeder, Seeder. In: Wu, G., Rekik, I., Schirmer, M., Chung, A., Munsell, B. (eds) Connectomics in NeuroImaging. CNI 2018. Lecture Notes in Computer Science(), vol 11083. Springer, Cham. https://doi.org/10.1007/978-3-030-00755-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00755-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00754-6

  • Online ISBN: 978-3-030-00755-3

  • eBook Packages: Computer ScienceComputer Science (R0)