Skip to main content

Role of the Unconventional Prefoldin Proteins URI and UXT in Transcription Regulation

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1106))

Abstract

The Unconventional prefoldin RPB5 interacting protein (URI), also known as RPB5-Mediating Protein (RMP) has been shown to play several regulatory roles in different cellular compartments including the mitochondria, as a phosphatase binding protein; in the cytoplasm, as a chaperone-like protein; and in the nucleus, as a transcriptional regulator through binding to RPB5 and RNA polymerase II (polII). This chapter focuses on the role URI plays in transcriptional regulation in the prostate cell. In prostate cells, URI is tightly bound to another prefoldin-like protein called UXT, a known androgen receptor (AR) cofactor. Part of a multiprotein complex, URI and UXT act as transcriptional repressors, and URI regulates KAP1 through PP2A phosphatase activity. The discovery of the interaction of URI and UXT with KAP1, AR, and PP2A, as well as the numerous interactions between URI and components of the R2TP/prefoldin-like complex, RPB5, and nuclear proteins involved in DNA damage response, chromatin remodeling and gene transcription, reveal a pleiotropic effect of the URI/UXT complex on nuclear processes. The mechanisms by which URI/UXT affect transcription, chromatin structure and regulation, and genome stability, remain to be elucidated but will be of fundamental importance considering the many processes affected by alterations of URI/UXT and other prefoldins and prefoldin-like proteins.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bennett-Lovsey RM et al (2008) Exploring the extremes of sequence/structure space with ensemble fold recognition in the program Phyre. Proteins 70(3):611–625

    Article  CAS  Google Scholar 

  • Bernecky C et al (2016) Structure of transcribing mammalian RNA polymerase II. Nature 529(7587):551–554

    Article  CAS  Google Scholar 

  • Boulon S et al (2010) HSP90 and its R2TP/Prefoldin-like cochaperone are involved in the cytoplasmic assembly of RNA polymerase II. Mol Cell 39(6):912–924

    Article  CAS  Google Scholar 

  • Cloutier P, Coulombe B (2010) New insights into the biogenesis of nuclear RNA polymerases? Biochem Cell Biol 88(2):211–221

    Article  CAS  Google Scholar 

  • Cloutier P et al (2009) High-resolution mapping of the protein interaction network for the human transcription machinery and affinity purification of RNA polymerase II-associated complexes. Methods 48(4):381–386

    Article  CAS  Google Scholar 

  • de Bono JS et al (2011) Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med 364(21):1995–2005

    Article  Google Scholar 

  • Delgehyr N et al (2012) Drosophila Mgr, a Prefoldin subunit cooperating with von Hippel Lindau to regulate tubulin stability. Proc Natl Acad Sci U S A 109(15):5729–5734

    Article  CAS  Google Scholar 

  • Delgermaa L et al (2004) Subcellular localization of RPB5-mediating protein and its putative functional partner. Mol Cell Biol 24(19):8556–8566

    Article  CAS  Google Scholar 

  • Dephoure N et al (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105(31):10762–10767

    Article  CAS  Google Scholar 

  • Deplazes A et al (2009) Yeast Uri1p promotes translation initiation and may provide a link to cotranslational quality control. EMBO J 28(10):1429–1441

    Article  CAS  Google Scholar 

  • Djouder N et al (2007) S6K1-mediated disassembly of mitochondrial URI/PP1gamma complexes activates a negative feedback program that counters S6K1 survival signaling. Mol Cell 28(1):28–40

    Article  CAS  Google Scholar 

  • Dorjsuren D et al (1998) RMP, a novel RNA polymerase II subunit 5-interacting protein, counteracts transactivation by hepatitis B virus X protein. Mol Cell Biol 18(12):7546–7555

    Article  CAS  Google Scholar 

  • Fan JL et al (2014) URI regulates tumorigenicity and chemotherapeutic resistance of multiple myeloma by modulating IL-6 transcription. Cell Death Dis 5:e1126

    Article  CAS  Google Scholar 

  • Frydman J et al (1992) Function in protein folding of TRiC, a cytosolic ring complex containing TCP-1 and structurally related subunits. EMBO J 11(13):4767–4778

    Article  CAS  Google Scholar 

  • Gao Y et al (1992) A cytoplasmic chaperonin that catalyzes beta-actin folding. Cell 69(6):1043–1050

    Article  CAS  Google Scholar 

  • Geissler S, Siegers K, Schiebel E (1998) A novel protein complex promoting formation of functional alpha- and gamma-tubulin. EMBO J 17(4):952–966

    Article  CAS  Google Scholar 

  • Groner AC et al (2010) KRAB-zinc finger proteins and KAP1 can mediate long-range transcriptional repression through heterochromatin spreading. PLoS Genet 6(3):e1000869

    Article  Google Scholar 

  • Gstaiger M et al (2003) Control of nutrient-sensitive transcription programs by the unconventional prefoldin URI. Science 302(5648):1208–1212

    Article  CAS  Google Scholar 

  • Gu J et al (2015) URI expression in cervical cancer cells is associated with higher invasion capacity and resistance to cisplatin. Am J Cancer Res 5(4):1353–1367

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guicciardi ME, Gores GJ (2008) Cell stress gives a red light to the mitochondrial cell death pathway. Sci Signal 1(7):pe9

    Article  Google Scholar 

  • Hu X et al (2016) URI promotes gastric cancer cell motility, survival, and resistance to adriamycin in vitro. Am J Cancer Res 6(6):1420–1430

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iyengar S, Farnham PJ (2011) KAP1 protein: an enigmatic master regulator of the genome. J Biol Chem 286(30):26267–26276

    Article  CAS  Google Scholar 

  • Izumi N et al (2012) Heat shock protein 90 regulates phosphatidylinositol 3-kinase-related protein kinase family proteins together with the RUVBL1/2 and Tel2-containing co-factor complex. Cancer Sci 103(1):50–57

    Article  CAS  Google Scholar 

  • Jeronimo C et al (2007) Systematic analysis of the protein interaction network for the human transcription machinery reveals the identity of the 7SK capping enzyme. Mol Cell 27(2):262–274

    Article  CAS  Google Scholar 

  • Karimi MM et al (2011) DNA methylation and SETDB1/H3K9me3 regulate predominantly distinct sets of genes, retroelements, and chimeric transcripts in mESCs. Cell Stem Cell 8(6):676–687

    Article  CAS  Google Scholar 

  • Kirchner J et al (2008) Drosophila Uri, a PP1alpha binding protein, is essential for viability, maintenance of DNA integrity and normal transcriptional activity. BMC Mol Biol 9:36

    Article  Google Scholar 

  • Kubota H et al (1994) Identification of six Tcp-1-related genes encoding divergent subunits of the TCP-1-containing chaperonin. Curr Biol 4(2):89–99

    Article  CAS  Google Scholar 

  • Li X et al (2010) SUMOylation of the transcriptional co-repressor KAP1 is regulated by the serine and threonine phosphatase PP1. Sci Signal 3(119):ra32

    Article  Google Scholar 

  • Lundin VF et al (2008) Efficient chaperone-mediated tubulin biogenesis is essential for cell division and cell migration in C. elegans. Dev Biol 313(1):320–334

    Article  CAS  Google Scholar 

  • Markus SM et al (2002) Identification and characterization of ART-27, a novel coactivator for the androgen receptor N terminus. Mol Biol Cell 13(2):670–682

    Article  CAS  Google Scholar 

  • Matsui T et al (2010) Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature 464(7290):927–U149

    Article  CAS  Google Scholar 

  • McNamara RP et al (2016) KAP1 recruitment of the 7SK snRNP complex to promoters enables transcription elongation by RNA polymerase II. Mol Cell 61(1):39–53

    Article  CAS  Google Scholar 

  • Millan-Zambrano G, Chavez S (2014) Nuclear functions of prefoldin. Open Biol 4(7):140085

    Article  Google Scholar 

  • Millan-Zambrano G et al (2013) The prefoldin complex regulates chromatin dynamics during transcription elongation. PLoS Genet 9(9):e1003776

    Article  CAS  Google Scholar 

  • Mita P et al (2011) Regulation of androgen receptor-mediated transcription by RPB5 binding protein URI/RMP. Mol Cell Biol 31(17):3639–3652

    Article  CAS  Google Scholar 

  • Mita P et al (2013) Analysis of URI nuclear interaction with RPB5 and components of the R2TP/prefoldin-like complex. PLoS One 8(5):e63879

    Article  CAS  Google Scholar 

  • Mita P et al (2016) URI regulates KAP1 phosphorylation and transcriptional repression via PP2A phosphatase in prostate cancer cells. J Biol Chem 291(49):25516–25528

    Article  CAS  Google Scholar 

  • Ni L, Snyder M (2001) A genomic study of the bipolar bud site selection pattern in Saccharomyces cerevisiae. Mol Biol Cell 12(7):2147–2170

    Article  CAS  Google Scholar 

  • Nwachukwu JC et al (2009) Genome-wide impact of androgen receptor trapped clone-27 loss on androgen-regulated transcription in prostate cancer cells. Cancer Res 69(7):3140–3147

    Article  CAS  Google Scholar 

  • Parusel CT et al (2006) URI-1 is required for DNA stability in C. elegans. Development 133(4):621–629

    Article  CAS  Google Scholar 

  • Rowe HM et al (2010) KAP1 controls endogenous retroviruses in embryonic stem cells. Nature 463(7278):237–240

    Article  CAS  Google Scholar 

  • Scher HI et al (2012) Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 367(13):1187–1197

    Article  CAS  Google Scholar 

  • Schultz DC, Friedman JR, Rauscher FJ 3rd (2001) Targeting histone deacetylase complexes via KRAB-zinc finger proteins: the PHD and bromodomains of KAP-1 form a cooperative unit that recruits a novel isoform of the Mi-2alpha subunit of NuRD. Genes Dev 15(4):428–443

    Article  CAS  Google Scholar 

  • Siegert R et al (2000) Structure of the molecular chaperone prefoldin: unique interaction of multiple coiled coil tentacles with unfolded proteins. Cell 103(4):621–632

    Article  CAS  Google Scholar 

  • Taneja SS et al (2004) ART-27, an androgen receptor coactivator regulated in prostate development and cancer. J Biol Chem 279:13944–13952

    Article  CAS  Google Scholar 

  • Theurillat JP et al (2011) URI is an oncogene amplified in ovarian cancer cells and is required for their survival. Cancer Cell 19(3):317–332

    Article  CAS  Google Scholar 

  • Tronnersjo S et al (2007) The jmjN and jmjC domains of the yeast zinc finger protein Gis1 interact with 19 proteins involved in transcription, sumoylation and DNA repair. Mol Gen Genomics 277(1):57–70

    Article  Google Scholar 

  • Van Leuven F et al (1998) Molecular cloning of a gene on chromosome 19q12 coding for a novel intracellular protein: analysis of expression in human and mouse tissues and in human tumor cells, particularly Reed-Sternberg cells in Hodgkin disease. Genomics 54(3):511–520

    Article  Google Scholar 

  • Wei W et al (2003) Interaction with general transcription factor IIF (TFIIF) is required for the suppression of activated transcription by RPB5-mediating protein (RMP). Cell Res 13(2):111–120

    Article  CAS  Google Scholar 

  • White D et al (2012) The ATM substrate KAP1 controls DNA repair in heterochromatin: regulation by HP1 proteins and serine 473/824 phosphorylation. Mol Cancer Res 10(3):401–414

    Article  CAS  Google Scholar 

  • Yang L et al (2003) An ERG (ets-related gene)-associated histone methyltransferase interacts with histone deacetylases 1/2 and transcription co-repressors mSin3A/B. Biochem J 369(Pt 3):651–657

    Article  CAS  Google Scholar 

  • Yart A et al (2005) The HRPT2 tumor suppressor gene product parafibromin associates with human PAF1 and RNA polymerase II. Mol Cell Biol 25(12):5052–5060

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan K. Logan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thomas, P.A., Mita, P., Ha, S., Logan, S.K. (2018). Role of the Unconventional Prefoldin Proteins URI and UXT in Transcription Regulation. In: Djouder, N. (eds) Prefoldins: the new chaperones. Advances in Experimental Medicine and Biology, vol 1106. Springer, Cham. https://doi.org/10.1007/978-3-030-00737-9_6

Download citation

Publish with us

Policies and ethics