Skip to main content

Multi-source Transfer Learning

  • Chapter
  • First Online:
Learning Representation for Multi-View Data Analysis

Part of the book series: Advanced Information and Knowledge Processing ((AI&KP))

Abstract

Nowadays, it is common to see multiple sources available for knowledge transfer, each of which, however, may not include complete classes information of the target domain. Naively merging multiple sources together would lead to inferior results due to the large divergence among multiple sources. In this chapter, we attempt to utilize incomplete multiple sources for effective knowledge transfer to facilitate the learning task in target domain.

This chapter is reprinted with permission from IEEE. “Incomplete Multisource Transfer Learning”. IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 2, pp. 310–323, 2018.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://vasc.ri.cmu.edu/idb/html/face/

  2. 2.

    http://www.cs.uml.edu/~saenko/projects.html#data

  3. 3.

    http://www-scf.usc.edu/~boqinggo/domainadaptation.html

References

  • Belkin M, Niyogi P, Sindhwani V (2006) Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J Mach Learn Res 7:2399–2434

    MathSciNet  MATH  Google Scholar 

  • Ben-David S, Blitzer J, Crammer K,  Pereira F (2007) Analysis of representations for domain adaptation. In: Advances in neural information processing systems. pp 137–144

    Google Scholar 

  • Boumal N, Mishra B, Absil P-A, Sepulchre R (2014) Manopt, a Matlab toolbox for optimization on manifolds. J Mach Learn Res 15:1455–1459. http://www.manopt.org

  • Cai J-F, Candès EJ, Shen Z (2010) A singular value thresholding algorithm for matrix completion. SIAM J Optim 20(4):1956–1982

    Article  MathSciNet  Google Scholar 

  • Cai D, He X, Han J (2007) Spectral regression: a unified approach for sparse subspace learning. In: IEEE international conference on data mining. IEEE, pp 73–82

    Google Scholar 

  • Cheng L, Pan SJ (2014) Semi-supervised domain adaptation on manifolds. IEEE Trans Neural Netw Learn Syst 25(12):2240–2249

    Article  Google Scholar 

  • Coppersmith D, Winograd S (1987) Matrix multiplication via arithmetic progressions. In: Proceedings of the nineteenth annual ACM symposium on theory of computing. ACM, pp 1–6

    Google Scholar 

  • Ding Z, Shao M, Fu Y (2014) Latent low-rank transfer subspace learning for missing modality recognition. In: Proceedings of the 28th AAAI conference on artificial intelligence

    Google Scholar 

  • Ding Z, Shao M, Fu Y (2015) Deep low-rank coding for transfer learning. In: International joint conference on artificial intelligence. pp 3453–3459

    Google Scholar 

  • Ding Z, Shao M, Fu Y (2015) Missing modality transfer learning via latent low-rank constraint. IEEE Trans Image Process 24(11):4322–4334

    Article  MathSciNet  Google Scholar 

  • Ding Z, Shao M, Fu Y (2016) Transfer learning for image classification with incomplete multiple sources. In: International joint conference on neural networks. IEEE

    Google Scholar 

  • Ding Z, Shao M, Fu Y (2018) Incomplete multisource transfer learning. IEEE Trans Neural Netw Learn Syst 29(2):310–323

    Article  MathSciNet  Google Scholar 

  • Duan L, Xu D, Tsang IW (2012) Domain adaptation from multiple sources: a domain-dependent regularization approach. IEEE Trans Neural Netw Learn Syst 23(3):504–518

    Article  Google Scholar 

  • Fernando B, Habrard A, Sebban M, Tuytelaars T (2013) Unsupervised visual domain adaptation using subspace alignment. In: IEEE international conference on computer vision. pp 2960–2967

    Google Scholar 

  • Ge L, Gao J, Zhang A (2013) Oms-tl: a framework of online multiple source transfer learning. In: Proceedings of the 22nd ACM international conference on conference on information & knowledge management. pp 2423–2428

    Google Scholar 

  • Ge L, Gao J, Ngo H, Li K, Zhang A (2014) On handling negative transfer and imbalanced distributions in multiple source transfer learning. Stat Anal Data Min: ASA Data Sci J 7(4):254–271

    Article  MathSciNet  Google Scholar 

  • Gong B, Shi Y, Sha F, Grauman K (2012) Geodesic flow kernel for unsupervised domain adaptation. In: IEEE conference on computer vision and pattern recognition. pp 2066–2073

    Google Scholar 

  • Gopalan R, Li R, Chellappa R (2014) Unsupervised adaptation across domain shifts by generating intermediate data representations. IEEE Trans Pattern Anal Mach Intell 36(11):2288–2302

    Article  Google Scholar 

  • He J, Lawrence R (2011) A graph-based framework for multi-task multi-view learning. In: International conference on machine learning. pp 25–32

    Google Scholar 

  • He X, Niyogi P (2003) Locality preserving projections. In: Neural information processing systems, vol  16. p 153

    Google Scholar 

  • Hoffman J, Kulis B, Darrell T, Saenko K (2012) Discovering latent domains for multisource domain adaptation. In: European conference on computer vision. Springer, Berlin, pp 702–715

    Chapter  Google Scholar 

  • Jhuo I-H, Liu D, Lee D, Chang S-F (2012) Robust visual domain adaptation with low-rank reconstruction. In: IEEE conference on computer vision and pattern recognition. pp 2168–2175

    Google Scholar 

  • Jia C, Kong Y, Ding Z, Fu YR (2014) Latent tensor transfer learning for rgb-d action recognition. In: Proceedings of the 22nd ACM international conference on multimedia. ACM, pp 87–96

    Google Scholar 

  • Li J, Najmi A, Gray RM (2000) Image classification by a two-dimensional hidden markov model. IEEE Trans Signal Process 48(2):517–533

    Article  Google Scholar 

  • Lin Z, Chen M, Ma Y (2010) The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices. arXiv:1009.5055

  • Lin Z, Liu R, Su Z (2011) Linearized alternating direction method with adaptive penalty for low-rank representation. In: Neural information processing systems. pp 612–620

    Google Scholar 

  • Liu G, Yan S (2011) Latent low-rank representation for subspace segmentation and feature extraction. In: IEEE international conference on computer vision. pp 1615–1622

    Google Scholar 

  • Liu G, Lin Z, Yan S, Sun J, Yu Y, Ma Y (2013) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(1):171–184

    Article  Google Scholar 

  • Long M, Wang J, Ding G, Pan S, Yu P (2014) Adaptation regularization: a general framework for transfer learning. IEEE Trans Knowl Data Eng 26(5):1076–1089

    Article  Google Scholar 

  • Long M, Wang M, Ding G, Sun J, Yu P (2014) Transfer joint matching for unsupervised domain adaptation. In: IEEE conference on computer vision and pattern recognition. pp 1410–1417

    Google Scholar 

  • Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359

    Article  Google Scholar 

  • Saenko K, Kulis B, Fritz M, Darrell T (2010) Adapting visual category models to new domains. In: European conference on computer vision. Springer, pp 213–226

    Google Scholar 

  • Shao M, Kit D, Fu Y (2014) Generalized transfer subspace learning through low-rank constraint. Int J Comput Vis 1–20

    Google Scholar 

  • Shao L, Zhu F, Li X (2015) Transfer learning for visual categorization: a survey. IEEE Trans Neural Netw Learn Syst 26(5):1019–1034

    Article  MathSciNet  Google Scholar 

  • Shekhar S, Patel VM, Nguyen HV, Chellappa R (2013) Generalized domain-adaptive dictionaries. In: IEEE conference on computer vision and pattern recognition. pp 361–368

    Google Scholar 

  • Sun Q, Chattopadhyay R, Panchanathan S, Ye J (2011) A two-stage weighting framework for multi-source domain adaptation. In: Advances in neural information processing systems. pp 505–513

    Google Scholar 

  • Yan S, Xu D, Zhang B, Zhang H-J, Yang Q, Lin S (2007) Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29(1):40–51

    Article  Google Scholar 

  • Yang J, Yin W, Zhang Y, Wang Y (2009) A fast algorithm for edge-preserving variational multichannel image restoration. SIAM J Imaging Sci 2(2):569–592

    Article  MathSciNet  Google Scholar 

  • Yang L, Jing L, Yu J, Ng MK (2015) Learning transferred weights from co-occurrence data for heterogeneous transfer learning. IEEE Trans Neural Netw Learn Syst PP(99):1–1

    Google Scholar 

  • Yao Y, Doretto G (2010) Boosting for transfer learning with multiple sources. In: IEEE conference on computer vision and pattern recognition. pp 1855–1862

    Google Scholar 

  • Yu C-NJ, Joachims T (2009) Learning structural svms with latent variables. In: The 26th annual international conference on machine learning. pp 1169–1176

    Google Scholar 

  • Zhang K, Gong M, Schölkopf B (2015) Multi-source domain adaptation: a causal view. In: Twenty-ninth AAAI conference on artificial intelligence. pp 3150–3157

    Google Scholar 

  • Zhou P, Lin Z, Zhang C (2016) Integrated low-rank-based discriminative feature learning for recognition. IEEE Trans Neural Netw Learn Syst 27(5):1080–1093

    Article  MathSciNet  Google Scholar 

  • Zhu F, Shao L (2014) Weakly-supervised cross-domain dictionary learning for visual recognition. Int J Comput Vis 109(1–2):42–59

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengming Ding .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ding, Z., Zhao, H., Fu, Y. (2019). Multi-source Transfer Learning. In: Learning Representation for Multi-View Data Analysis. Advanced Information and Knowledge Processing. Springer, Cham. https://doi.org/10.1007/978-3-030-00734-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00734-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00733-1

  • Online ISBN: 978-3-030-00734-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics