Skip to main content

Phenomenological Structural Dynamics of Emergence: An Overview of How Emergence Emerges

  • Chapter
  • First Online:
The Systemic Turn in Human and Natural Sciences

Part of the book series: Contemporary Systems Thinking ((CST))

Abstract

We propose a conceptual overview of the phenomenology of emergence, dealing with some of its crucial properties, representations, and specific inducing phenomena. We focus on properties such as compatibility and equivalence, and their interplay, as a basis suitable for hosting and inducing processes of emergence. We specify this interplay by considering suitable hosting processes, such as synchronisation, covariance and correlation, coherence, and polarisation. We then consider phenomena where such processes are considered to occur, providing suitable foundations for the establishment of processes of emergence, such as the establishment of attractors, bifurcation points, chaos, dissipation, domains of coherence, multiple and remote synchronisations, and multiple systems. We list properties of representations understandable as signs, clues, and possible trademarks of the coherence of interplaying compatibilities and equivalences. This interplay establishes processes of emergence, such as the presence of bifurcations, meta-structural properties, network properties, non-equivalence, power laws, scale invariance, symmetry breaking, unpredictability, and the constructivist role of the observer. Such interplay is considered in the continuing absence of a consolidated theory of emergence and within a new, generalised conceptual framework where theorisation is no longer considered as a necessary perspective. Finally, we briefly discuss issues relating to simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Web Resources (Accessed on December 4, 2017)

References

  • Acebrón, J. A., Bonilla, L. L., Vicente, C. J. P., Ritort, F., & Spigler, R. (2005). The Kuramoto model: A simple paradigm for synchronization phenomena. Reviews of Modern Physics, 77, 137–185.

    Article  Google Scholar 

  • Aihara, K., Imura, J., & Ueta, T. (Eds.). (2015). Analysis and control of complex dynamical systems: Robust bifurcation, dynamic attractors, and network complexity. New York: Springer.

    Google Scholar 

  • Alligood, K. T., & Yorke, J. A. (2009). Chaos: An introduction to dynamical systems. New York: Springer.

    Google Scholar 

  • Altamura, M., ElvevÃ¥g, B., Campi, G., De Salvia, M., Marasco, D., Ricci, A., et al. (2012). Toward scale-free like behavior under increasing cognitive load. Complexity, 18, 13–43.

    Article  Google Scholar 

  • Anderson, C. (2008). The end of theory: The data deluge makes the scientific method obsolete. Wired magazine, 16(7). Retrieved December 4, 2017, from https://www.wired.com/2008/06/pb-theory/.

  • Anderson, P. W., & Stein, D. L. (1985). Broken symmetry, emergent properties, dissipative structures, life. Are they related? In F. E. Yates (Ed.), Self organizing systems: The emergence of order (pp. 445–457). New York: Plenum Press.

    Google Scholar 

  • Baas, N. A. (1994). Emergence, hierarchies, and hyperstructures. In C. G. Langton (Ed.), Alife III, Santa Fe Studies in the Sciences of Complexity, Proceedings (Vol. XVII, pp. 515–537). Redwood City: Addison-Wesley.

    Google Scholar 

  • Bailly, F., & Longo, G. (2011). Mathematics and the natural sciences. The physical singularity of life. London: Imperial College Press.

    Book  Google Scholar 

  • Baker, A. (2013). Complexity, networks, and non-uniqueness. Foundations of Science., 18, 687–705.

    Article  Google Scholar 

  • Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., et al. (2007). Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proceedings of the National Academy of Sciences of the United States of America, 105(4), 1232–1237.

    Article  Google Scholar 

  • Barabási, A. L. (2002). Linked: The new science of networks. Cambridge: Perseus Publishing.

    Google Scholar 

  • Barbi, E., Bertino, S., & Sonnino, E. (Eds.). (2004). Inverse projection techniques. Old and new approaches. New York: Springer.

    Google Scholar 

  • Batterman, R. (2011). Emergence, singularities, and symmetry breaking. Foundations of Physics, 41, 1031–1050.

    Article  Google Scholar 

  • Bohr, N. (1928). The quantum postulate and the recent development of atomic theory. Nature, 121(3050), 580–590.

    Article  Google Scholar 

  • Boccaletti, S. (2008). The synchronized dynamics of complex systems. Oxford: Elsevier.

    Book  Google Scholar 

  • Boccaletti, S., Kurths, J., Osipov, G., Valladares, D. L., & Zhouc, C. S. (2002). The synchronization of chaotic systems. Physics Reports, 366, 1–101.

    Article  Google Scholar 

  • Broersen, P. M. T. (2010). Automatic autocorrelation and spectral analysis. London: Springer.

    Google Scholar 

  • Brown, J. H., & West, G. B. (2000). Scaling in biology. Oxford: Oxford University Press.

    Google Scholar 

  • Bunde, A., & Havlin, S. (2012). Fractals and disordered systems. New York: Springer.

    Google Scholar 

  • Buck, J., & Buck, E. (1966). Biology of synchronous flashing of fireflies. Nature, 211, 562–564.

    Article  Google Scholar 

  • Calude, C. C., & Longo, G. (2016). The deluge of spurious correlations in big data. Foundations of Science, 22(3), 595–612.

    Article  Google Scholar 

  • Cartwright, E. (2014). Behavioral economics. New York: Routledge.

    Book  Google Scholar 

  • Cavagna, A., Cimarelli, A., Giardina, I., Parisi, G., Santagati, R., et al. (2010). Scale-free correlations in starling flocks. Proceedings of the National Academy of Sciences of the United States of America, 107, 11865–11870.

    Article  Google Scholar 

  • Christensen, K., & Moloney, N. R. (2005). Complexity and Criticality. London, UK: Imperial College Press.

    Book  Google Scholar 

  • Cicogna, G. (1981). Symmetry breakdown from bifurcation. Lettere al Nuovo Cimento, 31, 600–602.

    Article  Google Scholar 

  • Cloude, S. (2014). Polarisation: Applications in remote sensing. Oxford: Oxford University Press.

    Google Scholar 

  • Cohen, R., & Havlin, S. (2010). Complex networks: Structure, robustness and function. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Coudène, Y. (2016). Ergodic theory and dynamical systems. London: Springer.

    Book  Google Scholar 

  • Cruchtfield, J. P. (1994). The calculi of emergence: Computation, dynamics and induction. Physica D, 75, 11–54.

    Article  Google Scholar 

  • da Silva, I. N., Hernane Spatti, D., Andrade Flauzino, R., Liboni, L. H. B., & dos Reis Alves, S. F. (2017). Artificial neural networks: A practical course. Basel: Springer.

    Book  Google Scholar 

  • De Wolf, T., & Holvoet, T. (2005). Emergence versus self organisation: Different concepts but promising when combined. In S. A. Brueckner, G. Di Marzo Serugendo, A. Karageorgos, & R. Nagpal (Eds.), Engineering self-organising systems: Methodologies and applications, Lecture notes in computer science (Vol. 3464, pp. 1–15). Berlin: Springer.

    Chapter  Google Scholar 

  • De Wolf, T., Holvoet, T., & Samaey, G. (2006). Development of self-organising emergent applications with simulation-based numerical analysis. In S. A. Brueckner, G. Di Marzo Serugendo, & A. Karageorgos (Eds.), Engineering self-organising systems (pp. 138–152). Berlin: Springer.

    Chapter  Google Scholar 

  • De Wolf, T., Samaey, G., & Holvoet, T. (2005). Engineering self-organising emergent systems with simulation-based scientific analysis. In S. Brueckner, G. Di Marzo Serugendo, D. Hales, & F. Zambonelli (Eds.), Proceedings of the Third International Workshop on Engineering Self-Organising Applications (pp. 146–160). New York: Springer.

    Google Scholar 

  • Doncaster, C. P., & Davey, A. J. H. (2007). Analysis of variance and covariance. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Dorogovtsev, S. N., Goltsev, A. V., & Mendes, J. F. F. (2008). Critical phenomena in complex networks. Reviews of Modern Physics, 80, 1275–1335.

    Article  Google Scholar 

  • Duncan, P., & Vigne, N. (1979). The effect of group size in horses on the rate of attacks by blood-sucking flies. Animal Behaviour, 27, 623–625.

    Article  Google Scholar 

  • Estrada, E. (2016). The structure of complex networks: Theory and applications. Oxford: Oxford University Press.

    Google Scholar 

  • Everitt, B. S., & Landau, S. (2011). Cluster Analysis. Chichester: Wiley.

    Book  Google Scholar 

  • Falconer, K. (2013). Fractals: A very short introduction. New York: Oxford University Press.

    Book  Google Scholar 

  • Fernandez, N., Maldonado, C., & Gershenson, C. (2014). Information measures of complexity, emergence, self-organization, homeostasis, and autopoiesis. In M. Prokopenko (Ed.), Guided self-organization: Inception. Emergence, complexity and computation (Vol. 9, pp. 19–51). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  • Fields, C. (2016). Building the observer into the system: Toward a realistic description of human interaction with the world. Systems, 4(4), 32 Retrieved December 4, 2017, from http://www.mdpi.com/2079-8954/4/4/32.

    Article  Google Scholar 

  • Foster, W. A., & Treherne, J. E. (1981). Evidence for the dilution effect in the selfish herd from fish predation on a marine insect. Nature, 295, 466–467.

    Article  Google Scholar 

  • Freeman, W. J., Kozma, R., & Werbos, P. (2001). Adaptive behavior in complex stochastic dynamical systems. BioSystems, 59, 109–123.

    Article  Google Scholar 

  • Gabbay, D. M., & Woods, J. (2005). A practical logic of cognitive systems: The reach of abduction: Insight and trial. Amsterdam: Elsevier.

    Google Scholar 

  • Gambuzza, L. V., Cardillo, A., Fiasconaro, A., Fortuna, L., Gómez-Gardeñes, J., & Frasca, M. (2013). Analysis of remote synchronization in complex networks. Chaos, 23(4), 1–8.

    Article  Google Scholar 

  • Getling, A. V. (1998). Rayleigh-Bénard convection: Structures and dynamics. Singapore: World Scientific.

    Book  Google Scholar 

  • Gilboa, I., Samuelson, L., & Schmeidler, D. (2015). Analogies and theories: Formal models of reasoning. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Giuliani, A. (2014). Networks as a privileged way to develop mesoscopic level approaches in systems biology. Systems, 2(2), 237–224 Retrieved December 4, 2017, from http://www.mdpi.com/2079-8954/2/2/237.

    Article  Google Scholar 

  • Giuliani, A., & Zbilut, J. (2008). The latent order of complexity. New York: NovaScience.

    Google Scholar 

  • Goosse, H. (2015). Climate system dynamics and modelling. New York: Cambridge University Press.

    Google Scholar 

  • Haken, H. (1983). Advanced synergetics. Berlin: Springer.

    Google Scholar 

  • Hair Jr., J. F., & Black, W. C. (2013). Multivariate data analysis. Harlow: Pearson.

    Google Scholar 

  • Heard, D. (2006). A new problem for ontological emergence. Philosophical Quarterly, 56, 55–62.

    Article  Google Scholar 

  • Heisenberg, W. (1971). Physics and beyond. New York: Harper & Row.

    Google Scholar 

  • Hemelrijk, C. K., & Hildenbrandt, H. J. (2015). Scale-free correlations, influential neighbours and speed control in flocks of birds. Journal of Statistical Physics, 158, 563–578.

    Article  Google Scholar 

  • Henriksen, R. N. (2015). Scale invariance: Self-similarity of the physical. Weinheim: Wiley.

    Book  Google Scholar 

  • Hirst, L. S. (2013). Fundamentals of soft matter science. Boca Raton: CRC Press.

    Google Scholar 

  • Hong, H., Park, H., & Choi, M. Y. (2005). Collective synchronization in spatially extended systems of coupled oscillators with random frequencies. Physical Review E, 72, 036217–036218.

    Article  Google Scholar 

  • Jakus, G., Milutinovic, V., Omerovic, S., & Tomazic, S. (2013). Concepts, ontologies, and knowledge representation. Springer Briefs in Computer Science. New York: Springer.

    Chapter  Google Scholar 

  • Jolliffe, I. T. (2002). Principal component analysis. New York: Springer.

    Google Scholar 

  • Kinoshita, S. (Ed.). (2013). Pattern formations and oscillatory phenomena & Belousov-Zhabotinsky reaction. Amsterdam: Elsevier.

    Google Scholar 

  • Krause, J., & Ruxton, G. D. (2002). Living in groups. New York: Oxford University Press.

    Google Scholar 

  • Kumar, K. (2004). From Post-Industrial to Post-Modern Society: new theories of the contemporary world. Oxford: Blackwell Publishers.

    Google Scholar 

  • Kuznetsov, Y. (2004). Elements of applied bifurcation theory. New York: Springer.

    Book  Google Scholar 

  • Laughlin, R. B., Pines, D., Schmalian, J., Stojkovic, B. P., & Wolynes, P. (2000). The middle way. Proceeding of the National Academy of Sciences of the United States of America, 97(1), 32–37.

    Article  Google Scholar 

  • Lee, R. D. (1974). Estimating series of vital rates and age structures from baptisms and burials: A new technique with applications to pre-industrial England. Population Studies, 28, 495–512.

    Article  Google Scholar 

  • Lee, R. D. (1978). Econometric studies of topics in demographic history. New York: Arno Press.

    Google Scholar 

  • Lee, R. D. (1985). Inverse projection and back projection: A critical appraisal and comparative results for England, 1539-1871. Population Studies, 39, 233–248.

    Article  Google Scholar 

  • Lewis, T. G. (2009). Network science: Theory and applications. Hoboken: Wiley.

    Book  Google Scholar 

  • Licata, I. (2008). Logical openness in cognitive models. Epistemologia, 31, 177–192.

    Google Scholar 

  • Licata, I. (2012). Seeing by models: Vision as adaptive epistemology. In G. Minati, M. Abram, & E. Pessa (Eds.), Methods, models, simulations and approaches towards a general theory of change (pp. 385–400). Singapore: World Scientific.

    Chapter  Google Scholar 

  • Licata, I., & Minati, G. (2016). Emergence, computation and the freedom degree loss information principle in complex systems. Foundations of Science, 21, 1–19.

    Article  Google Scholar 

  • Liljenstrom, H., & Svedin, U. (Eds.). (2005). Micro, meso, macro: Addressing complex systems couplings. Singapore: World Scientific.

    Google Scholar 

  • Lind, P. G., Gallas, J. A. C., & Herrmann, H. J. (2009). Coherence in complex networks of oscillators. In M. Ausloos & M. Dirickx (Eds.), The logistic map and the route to chaos. Berlin: Springer.

    Google Scholar 

  • Longo, G., & Montévil, M. (2014). Perspectives on Organisms. Biological time, Symmetries and Singularities. New York, NY: Springer.

    Google Scholar 

  • Lorenz, E. (1963). Deterministic non period flow. Journal of the Atmospheric Sciences, 20, 130–141.

    Article  Google Scholar 

  • Magurran, A. E. (1990). The adaptive significance of schooling as an anti-predator defence in fish. Annales Zoologici Fennici, 27(2), 51–66.

    Google Scholar 

  • Manrubia, S. C., & Mikhailov, A. S. (2004). Emergence of dynamical order: Synchronization phenomena in complex systems. Singapore: World Scientific.

    Book  Google Scholar 

  • Minati, G. (2012a). Knowledge to manage the knowledge society. The Learning Organisation, 19(4), 352–370.

    Google Scholar 

  • Minati, G., (2012b). (Guest editor). Special issue: Knowledge to manage the knowledge society. The Learning Organisation, 19 (4), 296.

    Article  Google Scholar 

  • Minati, G., & Licata, I. (2015). Meta-structures as multidynamics systems approach. some introductory outlines. Journal on Systemics, Cybernetics and Informatics, 13(4), 35–38 Retrieved December 4, 2017, from http://www.iiisci.org/journal/sci/issue.asp?is=ISS1504.

    Google Scholar 

  • Minati, G., Licata, I, & Pessa, E. (2013). Meta-structures: The search of coherence in collective behaviours (without physics); In A. Graudenzi, G. Caravagna, G. Mauri, & M. Antoniotti (Eds.), Proceedings Wivace 2013, Milan, Italy, July 1–2 (Vol. 130, pp. 35–42). Retrieved December 4, 2017, from http://rvg.web.cse.unsw.edu.au/eptcs/paper.cgi?Wivace2013.6.

    Article  Google Scholar 

  • Minati, G., & Licata, I. (2013). Emergence as mesoscopic coherence. Systems, 1(4), 50–65.

    Article  Google Scholar 

  • Minati, G., & Licata, I. (2012). Meta-structural properties in collective behaviours. International Journal of General Systems, 41, 289–311.

    Article  Google Scholar 

  • Minati, L. (2015). Remote synchronization of amplitudes across an experimental ring of non-linear oscillators. Chaos, 25(12), 123107–123112.

    Article  Google Scholar 

  • Minati, L., Chiesa, P., Tabarelli, D., D’Incerti, L., & Jovicich, J. (2015). Synchronization, non-linear dynamics and low-frequency fluctuations: Analogy between spontaneous brain activity and networked single-transistor chaotic oscillators. Chaos, 25(3), 033107–033127.

    Article  Google Scholar 

  • Minati, L., de Candia, A., & Scarpetta, S. (2016). Critical phenomena at a first-order phase transition in a lattice of glow lamps: Experimental findings and analogy to neural activity. Chaos, 26(7), 073103–073111.

    Article  Google Scholar 

  • Minati, G. (2016a). Knowledge to manage the knowledge society: The concept of theoretical incompleteness, Systems, 4(3), 26. Retrieved December 4, 2017, from http://www.mdpi.com/2079-8954/4/3/26.

    Article  Google Scholar 

  • Minati, G. (2016b). General System(s) Theory 2.0: A brief outline. In G. Minati, M. Abram, & E. Pessa (Eds.), Towards a post-bertalanffy systemics, Proceedings of the Sixth National Conference of the Italian Systems Society, Rome, Italy, 21–22 November 2014 (pp. 211–219). New York: Springer.

    Google Scholar 

  • Minati, L., Winkel, J., Bifone, A., OÅ›wiÄ™cimka, P., & Jovicich, J. (2017). Self-similarity and quasi-idempotence in neural networks and related dynamical systems. Chaos, 27(4), 043115.

    Article  Google Scholar 

  • Minati, G., & Pessa, E. (2006). Collective beings. New York: Springer.

    Google Scholar 

  • Minati, G., & Pessa, E. (2018). From collective beings to quasi-systems. New York: Springer.

    Book  Google Scholar 

  • Missaoui, R., & Sarr, I. (2015). Social network analysis - Community detection and evolution. New York: Springer.

    Google Scholar 

  • Mitra, P. (2014). Symmetries and symmetry breaking in field theory. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Motter, A. E., & Albert, R. (2012). Networks in motion. Physics Today, 65, 43–48.

    Article  Google Scholar 

  • Newman, M. (2010). Networks: An introduction. New York: Oxford University Press.

    Book  Google Scholar 

  • Newman, M., Barabasi, A.-L., & Watts, D. J. (Eds.). (2006). The structure and dynamics of networks. Princeton: Princeton University Press.

    Google Scholar 

  • Nitzan, A., & Ortoleva, R. (1980). Scaling and Ginzburg criteria for critical bifurcations in nonequilibrium reacting systems. Physical Review A, 21, 1735–1755.

    Article  Google Scholar 

  • Paine, A. D. M. (1985). Ergodic reasoning in geomorphology: time for a review of the term? Progress in Physical Geography, 9, 1–15.

    Article  Google Scholar 

  • Paperin, G., Green, D. G., & Sadedin, S. (2011). Dual-phase evolution in complex adaptive systems. Interface, 8, 609–629.

    Google Scholar 

  • Pessa, E. (2006). Physical and biological emergence: Are they different? In G. Minati, E. Pessa, & M. Abram (Eds.), Systemics of emergence. Research and development (pp. 355–374). Berlin: Springer.

    Chapter  Google Scholar 

  • Pessa, E. (2012). On models of emergent metastructures. In G. Minati, E. Pessa, & M. Abram (Eds.), Methods, Models, simulations and approaches towards a general theory of change (pp. 113–132). Singapore: World Scientific.

    Chapter  Google Scholar 

  • Pessa, E. (1998). Emergence, self-organization, and quantum theory. In G. Minati (Ed.), Proceedings of the First Italian Conference on Systemics (pp. 59–79). Milan: Apogeo scientific.

    Google Scholar 

  • Pourahmadi, M. (2013). High-dimensional covariance estimation. Hoboken: Wiley.

    Book  Google Scholar 

  • Prigogine, I. (1967). Dissipative structures in chemical systems. In S. Claesson (Ed.), Fast reactions and primary processes in chemical kinetics (pp. 371–382). New York NY: Interscience.

    Google Scholar 

  • Prigogine, I. (1981). From being to becoming: Time and complexity in the physical sciences. New York: W. H. Freeman.

    Google Scholar 

  • Prigogine, I. (1998). The end of certainty: Time, chaos, and the new laws of nature. New York: The Free Press.

    Google Scholar 

  • Pulliam, H. R. (1973). On the advantages of flocking. Journal of Theoretical Biology, 38, 419–422.

    Article  Google Scholar 

  • Reynolds, C. (1987). Flocks, herds, and schools: A distributed behavioral model. Computer Graphics, 21, 25–34.

    Article  Google Scholar 

  • Roberts, M., & Russo, R. (1999). A student’s guide to analysis of variance. New York: Routledge.

    Google Scholar 

  • Rosen, M. (1982). Hegel’s dialectic and its criticism. New York: Cambridge University press.

    Book  Google Scholar 

  • Rossetti, M. D. (2015). Simulation modeling and arena. Hoboken: Wiley-Blackwell.

    Google Scholar 

  • Ruelle, D. (1989). Chaotic evolution and attractors. New York: Cambridge University Press.

    Book  Google Scholar 

  • Samaey, G., Holvoet, T., & De Wolf, T. (2008). Using equation-free macroscopic analysis for studying self-organising emergent solutions. In Proceedings of the Second IEEE International Conference on Self-Adaptation and Self-Organization, IEEE Computer Society (pp. 425–434), Venice, Italy, October 20–24.

    Google Scholar 

  • Schroeder, M. (2009). Fractals, chaos, power laws: Minutes from an infinite paradise. New York: Dover Publications.

    Google Scholar 

  • Shevlyakov, G. L., & Oja, H. (2016). Robust Correlation: Theory and Applications. Chichester, UK: Wiley.

    Book  Google Scholar 

  • Sparrow, C. (2013). The Lorenz equations: Bifurcations, chaos, and strange attractors. New York: Springer.

    Google Scholar 

  • Stanley, H. E., Amaral, L. A. N., Gopikrishnan, P., Ivanov, P. C., Keitt, T. H., & Plerou, V. (2000). Scale invariance and universality: Organizing principles in complex systems. Physica A: Statistical Mechanics and its Applications, 281, 60–68.

    Article  Google Scholar 

  • Steffe, L. P., & Thompson, P. W. (Eds.). (2010). Radical constructivism in action: Building on the pioneering work of Ernst von Glasersfeld. London: Routledge.

    Google Scholar 

  • Stein, D. L. (1980). Dissipative structures, broken symmetry, and the theory of equilibrium phase transitions. Journal of Chemical Physics, 72, 2869–2874.

    Article  Google Scholar 

  • Strocchi, F. (2010). Symmetry breaking. Berlin: Springer.

    Google Scholar 

  • Taylor, S. (Ed.). (2014). Agent-based modeling and simulation. New York: Palgrave Macmillan.

    Google Scholar 

  • Transtrum, M. K., Machta, B. B., Brown, K. S., Daniels, B. C., Myers, C. R., & Sethna, J. P. (2015). Perspective: Sloppiness and emergent theories in physics, biology, and beyond. The Journal of Chemical Physics, 143(1), 010901–010913.

    Article  Google Scholar 

  • Turing, A. (1936). On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, 42, 230–265.

    Google Scholar 

  • Urdan, T. C. (2016). Statistics in plain English. New York: Routledge.

    Google Scholar 

  • Uzunov, D. I. (2010). Introduction to the theory of critical phenomena: Mean field, fluctuations and renormalization. Singapore: World Scientific.

    Book  Google Scholar 

  • Valente, T. W. (2012). Network interventions. Science, 337, 49–53.

    Article  Google Scholar 

  • Vicsek, T., & Zafeiris, A. (2012). Collective motion. Physics Reports, 517, 71–140.

    Article  Google Scholar 

  • Von Bertalanffy, L. (1968). General system theory: Foundations, development, applications. New York: George Braziller.

    Google Scholar 

  • Webber Jr., C. L., Ioana, C., & Marwan, N. (Eds.). (2016). Recurrence plots and their quantifications: Expanding horizons. New York: Springer.

    Google Scholar 

  • Webber Jr., C. L., & Marwan, N. (Eds.). (2016). Recurrence quantification analysis. New York: Springer.

    Google Scholar 

  • Wilson, E. O. (1975). Sociobiology. Cambridge: Belknap/Harvard University Press.

    Google Scholar 

  • Wu, J. (2012). Advances in K-means clustering: A data mining thinking. Berlin: Springer.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianfranco Minati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Minati, G. (2019). Phenomenological Structural Dynamics of Emergence: An Overview of How Emergence Emerges. In: Urbani Ulivi, L. (eds) The Systemic Turn in Human and Natural Sciences. Contemporary Systems Thinking. Springer, Cham. https://doi.org/10.1007/978-3-030-00725-6_1

Download citation

Publish with us

Policies and ethics