Skip to main content

3D Imaging for Craniofacial Anomalies

  • Chapter
  • First Online:
Craniofacial 3D Imaging

Abstract

Craniofacial anomalies (CFAs) can arise from any type of abnormal growth or deformity of the structures of the craniofacial skeleton. The variations of these anomalies arise from a number of different factors, including genetic factors, environmental factors, and folic acid deficiencies, and can range from very mild to severe, requiring surgery. Some of the most common types of craniofacial anomalies include cleft lip/cleft palate, craniosynostosis, hemifacial microsomia, vascular malformations, hemangioma, and deformational or positional plagiocephaly. Three-dimensional imaging of these CFAs continues to evolve with advances in technology. While cone-beam computed tomography (CBCT) is often considered the workhorse for imaging of CFAs, it is not without its own limitations. Indications for alternative or adjunctive imaging modalities include soft tissue detail, inflammatory processes, and temporomandibular joint morphology. This chapter provides a review of three-dimensional imaging techniques most commonly used for the diagnosis and management of craniofacial anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Petrik V, Apok V, Britton JA, Bell BA. Godfrey Hounsfield and the dawn of computed tomography. Neurosurgery. 2006;58:780–7. https://doi.org/10.1227/01.NEU.0000204309.91666.06.

    Article  PubMed  Google Scholar 

  2. Garayoa J, Castro P. A study on image quality provided by a kilovoltage cone-beam computed tomography. J Appl Clin Med Phys. 2013;14:239–57. https://doi.org/10.1120/jacmp.v14i1.3888.

    Article  PubMed Central  Google Scholar 

  3. Lechuga L, Weidlich GA. Cone beam CT vs. fan beam CT: a comparison of image quality and dose delivered between two differing CT imaging modalities. Cureus. 2016;8(9):1–13. https://doi.org/10.7759/cureus.778.

    Article  Google Scholar 

  4. Qu X, Li G, Ludlow JB, Zhang Z, Ma X. Effective radiation dose of ProMax 3D cone-beam computerized tomography scanner with different dental protocols. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;110(6):770–6. https://doi.org/10.1016/j.tripleo.2010.06.013.

    Article  PubMed  Google Scholar 

  5. Pauwels R, Araki K, Siewerdsen JH, Thongvigitmanee SS. Technical aspects of dental CBCT: state of the art. Dentomaxillofac Radiol. 2015;44:1–20. https://doi.org/10.1259/dmfr.20140224.

    Article  Google Scholar 

  6. Davies J, Johnson B, Drage NA. Effective doses from cone beam CT investigation of the jaws. Dentomaxillofac Radiol. 2012;41:30–6. https://doi.org/10.1259/dmfr/30177908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ludlow JB, Ivanovic M. Comparative dosimetry of dental CBCT devices and 64-slice CT for oral and maxillofacial radiology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;106:106–14. https://doi.org/10.1016/j.tripleo.2008.03.018.

    Article  PubMed  Google Scholar 

  8. Elstrøm UV, Muren LP, Petersen JBB, Grau C. Evaluation of image quality for different kV cone-beam CT acquisition and reconstruction methods in the head and neck region. Acta Oncol. 2011;50(6):908–17. https://doi.org/10.3109/0284186X.2011.590525.

    Article  PubMed  Google Scholar 

  9. Peyrin F, Dong P, Pacureanu A, Langer M. Micro and nano CT for the study of bone ultrastructure. Curr Osteoporos Rep. 2014;12:465–74. https://doi.org/10.1007/s11914-014-0233-0.

    Article  PubMed  Google Scholar 

  10. Kampschulte M, Langheinirch AC, Sender J, Litzlbauer HD, Althohn U, Schwab JD, et al. Nano-computed tomography: technique and applications. Fortschr Röntgenstr. 2016;188:146–54. https://doi.org/10.1055/s-0041-106541.

    Article  CAS  Google Scholar 

  11. Day CJ, Lee RT. Three-dimensional assessment of the facial soft tissue changes that occur postoperatively in orthognathic patients. World J Orthod. 2006;7:15–26.

    PubMed  Google Scholar 

  12. Yu Z, Mu X, Feng S, Han J, Chang T. Flip-registration procedure of three-dimensional laser surface scanning images on quantitative evaluation of facial asymmetries. J Craniofac Surg. 2009;20(1):157–60. https://doi.org/10.1097/SCS.0b013e318191ce88.

    Article  PubMed  Google Scholar 

  13. Baik HS, Kim SY. Facial soft-tissue changes in skeletal class III orthognathic surgery patients analyzed with 3-dimensional laser scanning. Am J Orthod Dentofac Orthop. 2010;138:167–78. https://doi.org/10.1016/j.ajodo.2010.02.022.

    Article  Google Scholar 

  14. Soncul M, Bamber MA. Evaluation of facial soft tissue changes with optical surface scan after surgical correction of class III deformities. J Oral Maxillofac Surg. 2004;62:1331–40. https://doi.org/10.1016/j.joms.2004.04.019.

    Article  PubMed  Google Scholar 

  15. Langdon J, Patel M, Ord R, Brennan P. Operative oral and maxillofacial surgery. 3rd ed. Boca Raton, FL: CRC Press: Taylor & Francis Group; 2010.

    Book  Google Scholar 

  16. Nguyen C, Nissanov J, Ozturk C, Nuveen M, Tuncay OC. Three-dimensional imaging of the craniofacial complex. Clin Orthod Res. 2000;3:46–50. https://doi.org/10.1034/j.1600-0544.2000.030108.x.

    Article  PubMed  Google Scholar 

  17. Chan B, Auyeung J, Rudan JF, Ellis RE, Kunz M. Intraoperative application of hand-held structured light scanning: a feasibility study. Int J CARS. 2016;11:1101–8. https://doi.org/10.1007/s11548-016-1381-8.

    Article  Google Scholar 

  18. Hajeer MY, Millett DT, Ayoub AF, Siebert JP. Applications of 3D imaging in orthodontics: part II. J Orthod. 2004;31(2):154–62. https://doi.org/10.1179/146531204225020472.

    Article  CAS  PubMed  Google Scholar 

  19. Burke PH, Beard FH. Stereophotogrammetry of the face: a preliminary investigation into the accuracy of a simplified system evolved for contour mapping by photography. Am J Orthod. 1967;53(10):769–82.

    Article  CAS  Google Scholar 

  20. Schendel SA, Jacobson R, Khalessi S. 3-Dimensional facial simulation in orthognathic surgery: is it accurate? J Oral Maxillofac Surg. 2013;71:1406–14. https://doi.org/10.1016/j.joms.2013.02.010.

    Article  PubMed  Google Scholar 

  21. Khambay B, Nebel JC, Bowman J, Walker F, Hadley DM, Ayoub A. A pilot study: 3D stereophotogrammetric image superimposition onto 3D CT scan images – the future of orthognathic surgery. Int J Orthodon Orthognath Surg. 2002;17:331–41.

    Google Scholar 

  22. Bugaighis I, Mattick CR, Orth F, Tiddeman B, Hobson R. 3D facial morphometry in children with oral clefts. Cleft Palate Craniofac J. 2014;51(4):452–61. https://doi.org/10.1597/12-217.

    Article  CAS  PubMed  Google Scholar 

  23. Mailey B, Baker JL, Hosseini A, Collins J, Suliman A, Wallace AM, Cohen SR. Evaluation of facial volume changes after rejuvenation surgery using a 3-dimensional camera. Aesthet Surg J. 2016;36(4):379–87. https://doi.org/10.1093/asj/sjv226.

    Article  PubMed  Google Scholar 

  24. Knoops PGM, Beaumont CAA, Borghi A, Rodriguez-Florez N, Breakey RWF, Rodgers W, et al. Comparison of three-dimensional scanner systems for craniomaxillofacial imaging. J Plast Reconstr Aesthet Surg. 2017;70:441–9. https://doi.org/10.1016/j.bjps.2016.12.015.

    Article  PubMed  Google Scholar 

  25. Tzou CHJ, Artner NM, Pona I, Hold A, Placheta E, Kropatsch WG, Frey M. Comparison of three-dimensional surface-imaging systems. J Plast Reconstr Aesth Surg. 2014;67:489–97. https://doi.org/10.1016/j.bjps.2014.01.003.

    Article  Google Scholar 

  26. Maal TJ, Van Loon B, Plooij JM, Rangel F, Ettema AM, Borstlap WA, Berge SJ. Registration of 3-dimensional facial photographs for clinical use. J Oral Maxillofac Surg. 2010;68:2391–401. https://doi.org/10.1016/j.joms.2009.10.017.

    Article  PubMed  Google Scholar 

  27. Heike CL, Upson K, Stuhaug E, Weinberg SM. 3D digital stereophotogrammetry: a practical guide to facial image acquisition. Head Face Med. 2010;6:18. https://doi.org/10.1186/1746-160X-6-18.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ferrario VF, Sforza C, Poggio CE, Serrao G. Facial three-dimensional morphometry. Am J Orthod Dentofacial Orthop. 1996;109(1):86–93.

    Article  CAS  Google Scholar 

  29. Webber RL, Horton RA, Tyndall DA, Ludlow JB. Tuned-aperture computed tomography (TACT). Theory and application for three-dimensional dentoalveolar imaging. Dentomaxillofac Radiol. 1997;26(1):53–62. https://doi.org/10.1038/sj.dmfr.4600201.

    Article  CAS  PubMed  Google Scholar 

  30. Shah N, Bansal N, Logani A. Recent advances in imaging technologies in dentistry. World J Radiol. 2014;6(10):794–807. https://doi.org/10.4329/wjr.v6.i10.794.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nair MK, Seyedain A, Webber RL, Nair UP, Piesco NP, Agarwal S, et al. Fractal analyses of osseous healing using tuned aperture computed tomography images. Eur Radiol. 2001;11(8):1510–5. https://doi.org/10.1007/s003300000773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nair MK, Nair UP, Seyedain A, Gassner R, Piesco N, Mooney M, et al. Correlation of tuned aperture computed tomography with conventional computed tomography for evaluation of osseous healing in calvarial defects. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;103(2):267–73. https://doi.org/10.1016/j.tripleo.2006.02.006.

    Article  PubMed  Google Scholar 

  33. Nair MK, Seyedain A, Agarwall S, Webber RL, Nair UP, Piesco NP, et al. Tuned aperture computed tomography to evaluate osseous healing. J Dent Res. 2001;80(7):1621–4. https://doi.org/10.1177/00220345010800070501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nair MK, Tyndall DA, Ludlow JB, May K. Tuned aperture computed tomography and detection of recurrent caries. Caries Res. 1998;32:23–30. https://doi.org/10.1159/000016426.

    Article  CAS  PubMed  Google Scholar 

  35. Nance R, Tyndall D, Levin LG, Trope M. Identification of root canals in molars by tuned-aperture computed tomography. Int Endod J. 2000;33(4):392–6. https://doi.org/10.1046/j.1365-2591.2000.00330.x.

    Article  CAS  PubMed  Google Scholar 

  36. Liang H, Tyndall DA, Ludlow JB, Lang LA. Cross-sectional presurgical implant imaging using tuned aperture computed tomography. Dentomaxillofac Radiol. 1999;28(4):232–7. https://doi.org/10.1038/sj/dmfr/4600451.

    Article  CAS  PubMed  Google Scholar 

  37. Ferreira LA, Grossmann E, Januzzi E, de Paula MVQ, Carvalho ACP. Diagnosis of temporomandibular joint disorders: indication of imaging exams. Braz J Otorhinolaryngol. 2016;82:341–52. https://doi.org/10.1016/j.bjorl.2015.06.010.

    Article  PubMed  Google Scholar 

  38. Navallas M, Inarejos EJ, Iglesias E, Cho Lee GY, Rodriguez N, Anton J. MR imaging of the temporomandibular joint in juvenile idiopathic arthritis: technique and findings. Radiographics. 2017;37:595–612. https://doi.org/10.1148/rg.2017160078.

    Article  PubMed  Google Scholar 

  39. Hechler BL, Phero JA, Van Mater H, Matthews NS. Ultrasound versus magnetic resonance imaging of the temporomandibular joint in juvenile idiopathic arthritis: a systematic review. Int J Oral Maxillofac Surg. 2018;47:83–9. https://doi.org/10.1016/j.ijom.2017.07.014.

    Article  CAS  PubMed  Google Scholar 

  40. Karatas O, Toy E. Three-dimensional imaging techniques: a literature review. Eur J Dent. 2014;8(1):132. https://doi.org/10.4103/1305-7456.126269.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Battal B, Kocaoglu M, Bulakbasi N, Husmen G, Sanal HT, Tayfun C. Cerebrospinal fluid flow imaging by using phase-contrast MR technique. Br J Radiol. 2011;84:758–65. https://doi.org/10.1259/bjr/66206791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. The Johns Hopkins University. Arteriogram. http://www.hopkinsmedicine.org/healthlibrary/conditions/radiology/arteriogram_85,p01274/. Accessed 5 Jun 2017.

  43. Herzig R, Burval S, Krupka B, Vlachova I, Urbanek K, Mares J. Comparison of ultrasonography, CT angiography, and digital subtraction angiography in severe carotid stenosis. Eur J Neurol. 2004;11:774–81. https://doi.org/10.1111/j.1468-1331.2004.00878.x.

    Article  CAS  PubMed  Google Scholar 

  44. Newton C. Comparing CTA and MRA. Diagn Invasive Cardiol. 2010;50(3):22–3.

    Google Scholar 

  45. Hartung MP, Grist TM, Francois CJ. Magnetic resonance angiography: current status and future directions. J Cardiovasc Magn Reson. 2011;13:19. https://doi.org/10.1186/1532-429X-13-19.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hassanien OA, Ghieda UE, Younes RL, Shaban EA. Facial vascular anomalies; MRI and TRICKS-MR angiography diagnostic approach. Egypt J Radiol Nucl Med. 2017;48:885–95. https://doi.org/10.1016/j.ejrnm.2017.08.013.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin S. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Smith, K.S., Davidson, M. (2019). 3D Imaging for Craniofacial Anomalies. In: Kadioglu, O., Currier, G. (eds) Craniofacial 3D Imaging. Springer, Cham. https://doi.org/10.1007/978-3-030-00722-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00722-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00721-8

  • Online ISBN: 978-3-030-00722-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics