Skip to main content

Genomics, Other “OMIC” Technologies, Precision Medicine, and Additional Biotechnology-Related Techniques

Abstract

The products resulting from the techniques and processes of biotechnology continue to grow at an exponential rate, and the expectations are that an even greater percentage of drug development and clinically-utilized pharmaceuticals worldwide will be classified as biologics. A recent Pharmaceutical Research and Manufacturers of America report (PhRMA, 2017 industry profile: medicines are transforming the trajectory of disease. Available at http://phrma-docs.phrma.org/industryprofile/pdfs/2017IndustryProfile_MedicinesareTransforming.pdf, 2017) notes that there are currently about 7000 medicines in clinical development globally and 80% in the pipeline have the potential to be first-in-class treatments. Most pertinent to this textbook, the majority of these medicines in development were impacted directly or indirectly by biotechnologies at one or more points during their lifetime via: target identification, and/or lead identification, and/or lead optimization, and/or clinical development and evaluation and/or product production. Pharmaceutical biotechnology techniques are at the core of most methodologies used today for drug discovery and development of both biologics and small molecules. While recombinant DNA technology and hybridoma techniques were the major methods utilized in pharmaceutical biotechnology through most of its historical timeline, our ever-widening understanding of human cellular function and disease processes and a wealth of additional and innovative biotechnologies have been, and will continue to be, developed in order to harvest the information found in the human genome. These technological advances will provide a better understanding of the relationship between genetics and biological function, unravel the underlying causes of disease, explore the association of genomic variation and drug response, enable personalized and precision medicine, enhance pharmaceutical research, and fuel the discovery and development of new and novel biopharmaceuticals. These revolutionary technologies and additional biotechnology-related techniques are improving the very competitive and costly process of drug development of new medicinal agents, diagnostics, and medical devices. Some of the technologies and techniques described in this chapter are both well established and commonly used applications of biotechnology producing clinically-utilized medicines as well as potential therapeutic products now in the developmental pipeline. New techniques are emerging at a rapid and unprecedented pace and their full impact on the future of molecular medicine will turn dreams into realities.

Keywords

  • Human Genome Project (HGP)
  • Genomics
  • Single-nucleotide polymorphisms (SNPs)
  • Next-generation genome sequencing (NGS)
  • Whole-genome seuencing (WGS)
  • Whole-exome sequencing (WES)
  • Phenotype
  • Biobanks
  • Bioinformatics
  • Big data
  • Electronic health records (EHRs)
  • Transcriptomics
  • Proteomics
  • Druggable genome
  • Microarrays
  • Lab-on-a-chip
  • High-throughput screening
  • Biomarker
  • Metabolomics
  • Glycomics
  • Lipidomics
  • Nutragenomics
  • Microbiome
  • Genome-wide association studies (GWAS)
  • Epigenetics
  • Toxicogenomics
  • CRISPR
  • Chemical genomics

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-00710-2_9
  • Chapter length: 47 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-00710-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   119.99
Price excludes VAT (USA)
Figure 9.1
Figure 9.2
Figure 9.3
Figure 9.4
Figure 9.5
Figure 9.6
Figure 9.7
Figure 9.8
Figure 9.9
Figure 9.10
Figure 9.11
Figure 9.12
Figure 9.13

References

  • Adams R, Steckel M, Nicke B (2016) Functional genomics in pharmaceutical drug discovery. Handb Exp Pharmacol 232:25–41

    CAS  PubMed  CrossRef  Google Scholar 

  • Ahles A, Engelhardt S (2014) Polymorphic variants of adrenoceptors: pharmacology, physiology, and role in disease. Pharmacol Rev 66:598–637

    PubMed  CrossRef  CAS  Google Scholar 

  • Ahmad P, Ashraf M, Younis M, Hu X, Kumar A, Akram NA, Al-Qurainy F (2012) Role of transgenic plants in agriculture and biopharming. Biotechnol Adv 30:524–540

    CAS  PubMed  CrossRef  Google Scholar 

  • Ahmed S, Zhou Z, Zhou J, Chen S (2016) Pharmacogenomics of drug metabolizing enzymes and transporters: relevance to precision medicine. Genomics Proteomics Bioinformatics 14:298–313

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Altelaar AF, Munoz J, Heck AJ (2013) Next-generation proteomics: towards an integrative view of proteome dynamics. Nat Rev Genet 14:35–48

    CAS  PubMed  CrossRef  Google Scholar 

  • Alyass A, Turcotte M, Meyre D (2015) From big data analysis to personalized medicine for all: challenges and opportunities. BMC Med Genet 8:33–44

    Google Scholar 

  • Anderson DC, Kodukula K (2014) Biomarkers in pharmacology and drug discovery. Biochem Pharmacol 87:172–188

    CAS  PubMed  CrossRef  Google Scholar 

  • Aronson SJ, Rehm HL (2015) Building the foundation for genomics in precision medicine. Nature 526:336–342

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ayadi A, Birling MC, Bottomley J, Bussell J, Fuchs H, Fray M, Gailus-Durner V, Greenaway S, Houghton R, Karp N, Leblanc S, Lengger C, Maier H, Mallon AM, Marschall S, Melvin D, Morgan H, Pavlovic G, Ryder E, Skarnes WC, Selloum M, Ramirez-Solis R, Sorg T, Teboul L, Vasseur L, Walling A, Weaver T, Wells S, White JK, Bradley A, Adams DJ, Steel KP, Hrabě de Angelis M, Brown SD, Herault Y (2012) Mouse large-scale phenotyping initiatives: overview of the European Mouse Disease Clinic (EUMODIC) and of the Wellcome Trust Sanger Institute Mouse Genetics Project. Mamm Genome 23:600–610

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Beckmann JS, Lew D (2016) Reconciling evidence-based medicine and precision medicine in the era of big data: challenges and opportunities. Genome Med 8:134

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Beitelshees AL, Voora D, Lewis JP (2015) Personalized antiplatelet and anticoagulation therapy: applications and significance of pharmacogenomics. Pharmgenomics Pers Med 8:43–61

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benjak A, Sala C, Hartkoorn RC (2015) Whole-genome sequencing for comparative genomics and de novo genome assembly. Methods Mol Biol 1285:1–16

    CAS  PubMed  CrossRef  Google Scholar 

  • Berná G, Oliveras-López MJ, Jurado-Ruíz E, Tejedo J, Bedoya F, Soria B, Martín F (2014) Nutrigenetics and nutrigenomics insights into diabetes etiopathogenesis. Nutrients 6:5338–5369

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Bertolini LR, Meade H, Lazzarotto CR, Martins LT, Tavares KC, Bertolini M, Murray JD (2016) The transgenic animal platform for biopharmaceutical production. Transgenic Res 25:329–343

    CAS  PubMed  CrossRef  Google Scholar 

  • Bheda P, Schneider R (2014) Epigenetics reloaded: the single-cell revolution. Trends Cell Biol 24:712–723

    PubMed  CrossRef  Google Scholar 

  • Biesecker LG, Spinner NB (2013) A genomic view of mosaicism and human disease. Nat Rev Genet 14:307–320

    CAS  PubMed  CrossRef  Google Scholar 

  • Bingol K, Bruschweller-Li L, Li D, Zhang B, Xie M, Bruschweiler R (2016) Emerging new strategies for successful metabolite identification in metabolomics. Bioanalysis 8:557–573

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Birling MC, Schaefer L, André P, Lindner L, Maréchal D, Ayadi A, Sorg T, Pavlovic G, Hérault Y (2017) Efficient and rapid generation of large genomic variants in rats and mice using CRISMERE. Sci Rep 7:43331

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Bisson WH (2012) Drug repurposing in chemical genomics: can we learn from the past to improve the future? Curr Top Med Chem 12:1883–1888

    CAS  PubMed  CrossRef  Google Scholar 

  • Bitto A, Pallio G, Messina S, Arcoraci V, Pizzino G, Russo GT, Pallio S, Squadrito F, Altavilla D (2016) Genomic variations affecting biological effects of statins. Curr Drug Metab 17:566–572

    CAS  PubMed  CrossRef  Google Scholar 

  • Blumenthal GM, Mansfield E, Pazdur R (2016) Next-generation sequencing in oncology in the era of precision medicine. JAMA Oncol 2:13–14

    PubMed  CrossRef  Google Scholar 

  • Bradley A, Anastassiadis K, Ayadi A, Battey JF, Bell C, Birling MC, Bottomley J, Brown SD, Bürger A, Bult CJ, Bushell W, Collins FS, Desaintes C, Doe B, Economides A, Eppig JT, Finnell RH, Fletcher C, Fray M, Frendewey D, Friedel RH, Grosveld FG, Hansen J, Hérault Y, Hicks G, Hörlein A, Houghton R, Hrabé de Angelis M, Huylebroeck D, Iyer V, de Jong PJ, Kadin JA, Kaloff C, Kennedy K, Koutsourakis M, Lloyd KC, Marschall S, Mason J, McKerlie C, McLeod MP, von Melchner H, Moore M, Mujica AO, Nagy A, Nefedov M, Nutter LM, Pavlovic G, Peterson JL, Pollock J, Ramirez-Solis R, Rancourt DE, Raspa M, Remacle JE, Ringwald M, Rosen B, Rosenthal N, Rossant J, Ruiz Noppinger P, Ryder E, Schick JZ, Schnütgen F, Schofield P, Seisenberger C, Selloum M, Simpson EM, Skarnes WC, Smedley D, Stanford WL, Stewart AF, Stone K, Swan K, Tadepally H, Teboul L, Tocchini-Valentini GP, Valenzuela D, West AP, Yamamura K, Yoshinaga Y, Wurst W (2012) The mammalian gene function resource: the International Knockout Mouse Consortium. Mamm Genome 23:580–586

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Brazeau DA, Brazeau GA (2011a) Principles of the human genome and pharmacogenomics. American Pharmacists Association, Washington, DC, pp 1–10

    CrossRef  Google Scholar 

  • Brazeau DA, Brazeau GA (2011b) Principles of the human genome and pharmacogenomics. American Pharmacists Association, Washington, DC, pp 11–34

    CrossRef  Google Scholar 

  • Burstein D, Harrington LB, Strutt SC, Probst AJ, Anantharaman K, Thomas BC, Doudna JA, Ban Eld JF (2017) New CRISPR-Cas systems from uncultivated microbes. Nature 542:237–241

    CAS  PubMed  CrossRef  Google Scholar 

  • Cameron DE, Bashor CJ, Collins JJ (2014) A brief history of synthetic biology. Nat Rev Microbiol 12:381–390

    CAS  PubMed  CrossRef  Google Scholar 

  • Carroll D (2011) Genome engineering with zinc-finger nucleases. Genetics 188:773–782

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Caspar SM, Dubacher N, Kopps AM, Maienberg J, Henggeler C, Matyas C (2017) Clinical sequencing: from raw data to diagnosis with lifetime value. Clin Genet 93(3):508–519

    CrossRef  CAS  Google Scholar 

  • Cénit MC, Matzaraki V, Tigchelaar EF, Zhernakova A (2014) Rapidly expanding knowledge on the role of the gut microbiome in health and disease. Biochim Biophys Acta 1842:1981–1992

    PubMed  CrossRef  CAS  Google Scholar 

  • Cesario A, Auffray C, Russo P, Hood L (2014) P4 medicine needs P4 education. Curr Pharm Des 20:6071–6072

    CAS  PubMed  CrossRef  Google Scholar 

  • Chambliss AB, Chan DW (2016) Precision medicine: from pharmacogenomics to pharmacoproteomics. Clin Proteomics 13:25–33

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Chang SY, Weber EJ, Ness KV, Eaton DL, Kelly EJ (2016) Liver and kidney on chips: microphysiological models to understand transporter function. Clin Pharmacol Ther 100:464–478

    CAS  PubMed  CrossRef  Google Scholar 

  • Chau SB, Thomas RE (2015) The amplichip: a review of itas analytic and clinical validity and clinical utility. Curr Drug Saf 10:113–124

    CAS  PubMed  CrossRef  Google Scholar 

  • Chaudhry SR, Muhammad S, Eidens M, Klemm M, Khan D, Efferth T, Weisshaar MP (2014) Pharmacogenetic prediction of individual variability in drug response based on CYP2D6, CYP2C9 and CYP2C19 genetic polymorphisms. Curr Drug Metab 15:711–718

    CAS  PubMed  CrossRef  Google Scholar 

  • Chen M, Zhang L (2011) Epigenetic mechanisms in developmental programming of adult disease. Drug Discov Today 16:1007–1018

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Chen M, Zhang M, Borlak J, Tong W (2012) A decade of toxicogenomic research and its contribution to toxicological science. Toxicol Sci 130:217–228

    CAS  PubMed  CrossRef  Google Scholar 

  • Chen M, Bisgin H, Tong L, Hong H, Fang H, Borlak J, Tong W (2014) Toward predictive models for drug-induced liver injury in humans: are we there yet? Biomark Med 8:201–213

    CAS  PubMed  CrossRef  Google Scholar 

  • Chouchana L, Narjoz C, Roche D, Golmard JL, Pineau B, Chatellier G, Beaune P, Loriot MA (2014) Interindividual variability in TPMT enzyme activity: 10 years of experience with thiopurine pharmacogenetics and therapeutic drug monitoring. Pharmacogenomics 15:745–757

    CAS  PubMed  CrossRef  Google Scholar 

  • Church GM, Elowitz MB, Smolke CD, Voigt CA, Weiss R (2014) Realizing the potential of synthetic biology. Nat Rev Mol Cell Biol 15(4):289–294

    CAS  PubMed  CrossRef  Google Scholar 

  • Collins LJ, Schonfeld B (2011) The epigenetics of non-coding RNA. In: Tollefsbol T (ed) Handbook of epigenetics: the new molecular and medical genetics. Elsevier, London, pp 49–61

    CrossRef  Google Scholar 

  • Cong F, Cheung AK, Huang SM (2012) Chemical genetics-based target identification in drug discovery. Annu Rev Pharmacol Toxicol 52:57–78

    CAS  PubMed  CrossRef  Google Scholar 

  • Costa AR, Rodrigues ME, Henriques M, Oliveira R, Azeredo J (2014) Glycosylation: impact, control and improvement during therapeutic protein production. Crit Rev Biotechnol 34:281–299

    CAS  PubMed  CrossRef  Google Scholar 

  • Cummings RD, Pierce JM (2014) The challenge and promise of glycomics. Chem Biol 21:1–15

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Davis CA, Hitz BC, Sloan CA, Chan ET, Davidson JM, Gabdank I, Hilton JA, Ulugbek KJ, Baymuradov K, Narayanan AK (2018) The encyclopedia of DNA elements (ENCODE): data portal update. Nucleic Acids Res 41:D36–D42

    Google Scholar 

  • Dawson MA, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150:12–27

    CAS  CrossRef  PubMed  Google Scholar 

  • Daxinger L, Whitelaw E (2012) Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nat Rev Genet 13:153–162

    CAS  PubMed  CrossRef  Google Scholar 

  • De R, Bush WS, Moore JH (2014) Bioinformatics challenges in genome-wide association studies (GWAS). Methods Mol Biol 1168:63–81

    PubMed  CrossRef  Google Scholar 

  • Denner J (2017) Advances in organ transplant from pigs. Science 357:1238–1239

    CAS  PubMed  CrossRef  Google Scholar 

  • Dopazo J (2014) Genomics and transcriptomics in drug discovery. Drug Discov Today 19:126–132

    CAS  PubMed  CrossRef  Google Scholar 

  • Drabovich AP, Martinez-Morillo E, Diamandis EP (2015) Toward an integrated pipeline for protein biomarker development. Biochim Biophys Acta 1854:677–686

    CAS  PubMed  CrossRef  Google Scholar 

  • Drew L (2016) Pharmacogenetics: the right drug for you. Nature 537:S60–S62

    CAS  PubMed  CrossRef  Google Scholar 

  • Dugger SA, Platt A, Goldstein DB (2017) Drug development in the era of precision medicine. Nat Rev Drug Discov 17(3):183–196

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Ebhardt HA, Root A, Sander C, Aebersold R (2015) Applications of targeted proteomics in systems biology and translational medicine. Proteomics 15:3193–3208

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Eddy JA, Funk CC, Price ND (2013) Fostering synergy between cell biology and systems biology. Methods Mol Biol 1021:1–11

    CrossRef  Google Scholar 

  • Eder J, Herrling PL (2016) Trends in modern drug discovery. Handb Exp Pharmacol 232:3–20

    CAS  PubMed  CrossRef  Google Scholar 

  • Everett JR (2015) Academic drug discovery: current status and prospects. Expert Opin Drug Discov 10:937–944

    PubMed  CrossRef  CAS  Google Scholar 

  • Fatehullah A, Tan SH, Barker N (2016) Organoids as an in vitro model of human development and disease. Nat Cell Biol 18:246–254

    PubMed  CrossRef  CAS  Google Scholar 

  • Feinberg AP, Irizarry RA, Fradin D, Aryee MJ, Murakami P, Aspelund T, Eirksdottir G, Harris TB, Launer L, Gudnason V, Fallin MD (2010) Personalized epigenomic signatures that are stable over time and covary with body mass index. Sci Transl Med 2:45–51

    CrossRef  CAS  Google Scholar 

  • Ferguson LR, De Caterina R, Görman U, Allayee H, Kohlmeier M, Prasad C, Choi MS, Curi R, de Luis DA, Gil Á, Kang JX, Martin RL, Milagro FI, Nicoletti CF, Nonino CB, Ordovas JM, Parslow VR, Portillo MP, Santos JL, Serhan CN, Simopoulos AP, Velázquez-Arellano A, Zulet MA, Martinez JA (2016) Guide and position of the International Society of Nutrigenetics/Nutrigenomics on personalised nutrition: part 1 - fields of precision nutrition. J Nutrigenet Nutrigenomics 9:12–27

    PubMed  CrossRef  Google Scholar 

  • Filipski KK, Murphy JD, Helzlsouer KJ (2017) Updating the landscape of direct-to-consumer pharmacogenomic testing. Pharmgenomics Pers Med 10:229–232

    PubMed  PubMed Central  Google Scholar 

  • Fluck J, Hofmann-Apitius M (2014) Text mining for systems biology. Mol Gen Genomics 289:727–734

    CrossRef  CAS  Google Scholar 

  • Foley KE (2017) Organoids: a better in vitro model. Nat Methods 14:559–562

    CAS  PubMed  CrossRef  Google Scholar 

  • Frick A, Benton CS, Scolaro KL, McLaughlin JE, Bradley CL, Suzuki OT, Wang N, Wiltshire T (2016) Transitioning pharmacogenomics into the clinical setting: training future pharmacists. Pharmacogenomics 17:535–539

    CrossRef  CAS  Google Scholar 

  • Friedman AA, Letai A, Fisher DE, Flaherty KT (2015) Precision medicine for cancer with next-generation functional diagnostics. Nat Rev Cancer 15:747–756

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Garate Z, Quintana-Bustamante O, Crane AM, Olivier E, Poirot L, Galetto R, Kosinski P, Hill C, Kung C, Agirre X, Orman I, Cer- rato L, Alberquilla O, Rodriguez-Fornes F, Fusaki N, Garcia- Sanchez F, Maia TM, Ribeiro ML, Sevilla J, Prosper F, Jin S, Mountford J, Guenechea G, Gouble A, Bueren JA, Davis BR, Segovia JC (2015) Generation of a high number of healthy erythroid cells from gene-edited pyruvate kinase deficiency patient-specifc induced pluripotent stem cells. Stem Cell Rep 5:1053–1066

    CAS  CrossRef  Google Scholar 

  • Glass JI, Smith HO, Hutchison III CA, Alperovich NY, Assad-Garcia N (2007) Minimal bacterial genome. United States Patent Application 20070122826, May 31, 2007

    Google Scholar 

  • Global Market Insights (2017) Precision medicine market worth over $96 Bn by 2024. https://www.gminsights.com/pressrelease/precision-medicine-market. Accessed 24 Jan 2018

  • Goundrey-Smith S (2013) Information technology in pharmacy. Springer, London

    CrossRef  Google Scholar 

  • Greene CS, Tan J, Ung M, Moore JH, Cheng C (2014) Big data bioinformatics. J Cell Physiol 229:1896–1900

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Harms DW, Quadros RM, Seruggia D, Ohtsuka M, Takahashi G, Montoliu L, Gurumurthy CB (2014) Mouse genome editing using the CRISPR/Cas system. Curr Protoc Hum Genet 83:1–27

    Google Scholar 

  • Hasin Y, Seldin M, Lusis A (2017) Multi-omics approaches to disease. Genome Biol 18:1–15

    CrossRef  CAS  Google Scholar 

  • Hatz MH, Schremser K, Rogowski WH (2014) Is individualized medicine more cost-effective? A systematic review. PharmacoEconomics 32:443–455

    PubMed  CrossRef  Google Scholar 

  • Hayes DF, Markus HS, Leslie RD, Topol EJ (2014) Personalized medicine: risk prediction, targeted therapies and mobile health technology. BMC Med 12:37–44

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Hehir-Kwa JY, Pfundt R, Veltman JA (2015) Exome sequencing and whole genome sequencing for the detection of copy number variation. Expert Rev Mol Diagn 15:1023–1032

    CAS  PubMed  CrossRef  Google Scholar 

  • Hertz DL, Rae JM (2016) Pharmacogenetic predictors of response. Adv Exp Med Biol 882:191–215

    CAS  PubMed  CrossRef  Google Scholar 

  • Höglund M (1998) Glycosylated and non-glycosylated recombinant human granulocyte colony-stimulating factor (rhG-CSF)--what is the difference? Med Oncol 15:229–233

    PubMed  CrossRef  Google Scholar 

  • Höhne M, Kabisch J (2016) Brewing painkillers: a yeast cell factory for the production of opioids from sugar. Angew Chem Int Ed Engl 55:1248–1125

    PubMed  CrossRef  CAS  Google Scholar 

  • Hollebecque A, Massard C, Soria JC (2014) Implementing precision medicine initiatives in the clinic: a new paradigm in drug development. Curr Opin Oncol 26:340–346

    CAS  PubMed  CrossRef  Google Scholar 

  • Hyman DM, Solit DB, Arcila ME, Cheng DT, Sabbatini P, Baselga J, Berger MF, Ladanyi M (2015) Precision medicine at Memorial Sloan Kettering Cancer Center: clinical next-generation sequencing enabling next-generation targeted therapy trials. Drug Discov Today 20:1422–1428

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Inbar-Feigenberg M, Choufani S, Butcher DT, Roifman M, Weksberg R (2013) Basic concepts of epigenetics. Fertil Steril 99:607–615

    CAS  PubMed  CrossRef  Google Scholar 

  • IOM (Institute of Medicine) (2013) Best care at lower cost: the path to continuously learning health care in America. The National Academies Press, Washington DC

    Google Scholar 

  • Jacob HJ et al (2013) Genomics in clinical practice: lessons from the front lines. Sci Transl Med 5:1–5

    CrossRef  Google Scholar 

  • Ji B, Nielsen J (2015) From next-generation sequencing to systematic modeling of the gut microbiome. Front Genet 6:219

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Jiang J, Tian F, Cai Y, Qian X, Coatello CE, Ying W (2014) Site-specific qualitative and quantitative analysis of the N- and O-glycoforms in recombinant human erythropoietin. Anal Bioanal Chem 406:6265–6274

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Jiang Z, Zhou X, Li R, Michal JJ, Zhang S, Dodson MV, Zhang Z, Harland RM (2015) Whole transcriptome analysis with sequencing: methods, challenges and potential solutions. Cell Mol Life Sci 72:3425–3439

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Joly Y, Saulnier KM, Osien G, Knoppers BM (2014) The ethical framing of personalized medicine. Curr Opin Allergy Clin Immunol 14:404–408

    PubMed  CrossRef  Google Scholar 

  • Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14:49–55

    CAS  PubMed  CrossRef  Google Scholar 

  • Jung HJ, Kwon HJ (2015) Target deconvolution of bioactive small molecules: the heart of chemical biology and drug discovery. Arch Pharm Res 38:1627–1641

    CAS  PubMed  CrossRef  Google Scholar 

  • Karahalil B (2016) Overview of systems biology and omics technologies. Curr Med Chem 23:4221–4230

    CAS  PubMed  CrossRef  Google Scholar 

  • Kell DB (2013) Finding novel pharmaceuticals in the systems biology era using multiple effective drug targets, phenotypic screening and knowledge of transporters: where drug discovery went wrong and how to fix it. FEBS J 280:5957–5980

    CAS  PubMed  CrossRef  Google Scholar 

  • Kelsey G, Stegle O, Reik W (2017) Single-cell epigenomics: recording the past and predicting the future. Science 358:69–75

    CAS  PubMed  CrossRef  Google Scholar 

  • Khan SR, Baghdasarian A, Fahlman RP, Michail K, Siraki AG (2014) Current status and future prospects of toxicogenomics in drug discovery. Drug Discov Today 19:562–578

    CAS  PubMed  CrossRef  Google Scholar 

  • Kim H, Kim JS (2014) A guide to genome engineering with programmable nucleases. Nat Rev Genet 15:321–334

    CAS  PubMed  CrossRef  Google Scholar 

  • Kolodziejczyk AA, Kim JK, Svensson V, Marioni JC, Teichmann SA (2015) The technology and biology of single-cell RNA sequencing. Mol Cell 58:610–620

    CAS  PubMed  CrossRef  Google Scholar 

  • Koo BC, Kwon MS, Kim T (2014) Retrovirus-mediated gene transfer. In: Pinkert CA (ed) Transgenic animal technology, 3rd edn. Elsevier, London, pp 167–194

    CrossRef  Google Scholar 

  • Kwapisz D (2017) The first liquid biopsy test approved. Is it a new era of mutation testing for non-small cell lung cancer? Ann Transl Med 5:46

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lamas-Toranzo I, Guerrero-Sánchez J, Miralles-Bover H, Alegre-Cid G, Pericuesta E, Bermejo-Álvarez P (2017) CRISPR is knocking on barn door. Reprod Domest Anim 52(Suppl 4):39–47

    CAS  PubMed  CrossRef  Google Scholar 

  • Lawrie DS, Petrov DA (2014) Comparative population genomics: power and principles for the inference of functionality. Trends Genet Apr 30:133–139

    CAS  CrossRef  Google Scholar 

  • Lee JW, Aminkeng F, Bhavsar AP, Shaw K, Carleton BC, Hayden MR, Ross CJ (2014) The emerging era of pharmacogenomics: current successes, future potential, and challenges. Clin Genet 86:21–28

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Levy SE, Myers RM (2016) Advancements in next-generation Sequencing. Annu Rev Genomics Hum Genet 17:95–115

    CAS  PubMed  CrossRef  Google Scholar 

  • Li W, Li M, Pu X, Guo Y (2017) Distinguishing the disease-associated SNPs based on composition frequency analysis. Interdiscip Sci 9:459–467

    CAS  PubMed  CrossRef  Google Scholar 

  • Lindon JC, Nicholson JK (2014) The emergent role of metabolic phenotyping in dynamic patient stratification. Expert Opin Drug Metab Toxicol 10:915–919

    CAS  PubMed  CrossRef  Google Scholar 

  • Madhusoodanan J (2014) Human gene set shrinks again. The Scientist 28:17

    Google Scholar 

  • Mandrycky C, Wang Z, Kim K, Kim DH (2016) 3D bioprinting for engineering complex tissues. Biotechnol Adv 34:422–434

    CAS  PubMed  CrossRef  Google Scholar 

  • Mastrangelo A, Armitage EG, Garcia A, Barbas C (2014) Metabolomics as a tool for drug discovery and personalized medicine. A review. Curr Top Med Chem 14:2627–2636

    CAS  PubMed  CrossRef  Google Scholar 

  • Medina MÁ (2013) Systems biology for molecular life sciences and its impact in biomedicine. Cell Mol Life Sci 70:1035–1053

    CAS  PubMed  CrossRef  Google Scholar 

  • Miao X (2013) Recent advances in the development of new transgenic animal technology. Cell Mol Life Sci 70:815–828

    CAS  PubMed  CrossRef  Google Scholar 

  • Mojica FJ, Montoliu L (2016) On the origin of CRISPR-Cas technology: from prokaryotes to mammals. Trends Microbiol 24:811–820

    CAS  PubMed  CrossRef  Google Scholar 

  • Moody SE, Boehm JS, Barbie DA, Hahn WC (2010) Functional genomics and cancer drug target discovery. Curr Opin Mol Ther 12:284–293

    CAS  PubMed  Google Scholar 

  • Morgan H, Simon M, Mallon AM (2012) Accessing and mining data from large-scale mouse phenotyping projects. Int Rev Neurobiol 104:47–70

    PubMed  CrossRef  Google Scholar 

  • Murdoch TB, Detsky AS (2013) The inevitable application of big data to health care. JAMA 3019:1351

    CrossRef  Google Scholar 

  • Nature Editors (2018) Monkeys cloned in China. Nature 553:387–388

    CrossRef  CAS  Google Scholar 

  • Niu D, Wei HJ, Lin L, George H, Wang T, Lee IH, Zhao HY, Wang Y, Kan Y, Shrock E, Lesha E, Wang G, Luo Y, Qing Y, Jiao D, Zhao H, Zhou X, Wang S, Wei H, Güell M, Church GM, Yang L (2017) Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science 357:1303–1307

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Omenn GS, Lane L, Lundberg EK, Beavis RC, Obverall CM, Deutsch EW (2016) Metrics for the human proteome project 2016: progress on identifying and characterizing the human proteome, including post-translational modifications. J Proteome Res 15:3951–3960

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Papastergiou J, Tolios P, Li W, Li J (2017) The innovative canadian pharmacogenomic screening initiative in community pharmacy (ICANPIC) study. J Am Pharm Assoc 57:624–629

    CrossRef  Google Scholar 

  • Patel JN (2015) Cancer pharmacogenomics: implications on ethnic diversity and drug response. Pharmacogenet Genomics 25:223–230

    CAS  PubMed  CrossRef  Google Scholar 

  • Patti GJ, Yanes O, Siuzdak G (2012) Metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 13:263–269

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Paul A, Paul S (2014) The breast cancer susceptibility genes (BRCA) in breast and ovarian cancers. Front Biosci 19:605–618

    CAS  CrossRef  Google Scholar 

  • PhRMA (2017) 2017 Industry profile: Medicines are Transforming the Trajectory of Disease. Available at http://phrma-docs.phrma.org/industryprofile/pdfs/2017IndustryProfile_MedicinesareTransforming.pdf. Accessed 11 Jan 2018

  • Pinkert CA (2014) Introduction to transgenic animal technology. In: Pinkert CA (ed) Transgenic animal technology, 3rd edn. Elsevier, London, pp 1–14

    Google Scholar 

  • Polites HG, Johnson LW, Pinkert CA (2014) DNA microinjection, embryo handling, and germplasm preservation. In: Pinkert CA (ed) Transgenic animal technology, 3rd edn. Elsevier, London, pp 17–70

    CrossRef  Google Scholar 

  • Prasad V, Fojo T, Brada M (2016) Precision oncology: origins, optimism, and potential. Lancet Oncol 17:e81–e86

    PubMed  CrossRef  Google Scholar 

  • Premsrirut P (2017) Drug discovery in the age of big data. Drug Discov World 17:8–15

    CrossRef  CAS  Google Scholar 

  • Prokopuk L, Western PS, Stringer JM (2015) Transgenerational epigenetic inheritance: adaptation through the germline epigenome? Epigenomics 7(5):829–846

    CAS  PubMed  CrossRef  Google Scholar 

  • Raciti GA, Nigro C, Longo M, Parrillo L, Miele C, Formisano P, Béguinot F (2014) Personalized medicine and type 2 diabetes: lesson from epigenetics. Epigenomics 6:229–238

    CAS  PubMed  CrossRef  Google Scholar 

  • Raghavachari N (2012) Overview of omics. In: Barh D, Blum K, Madigan MA (eds) OMICS-biomedical perspectives and applications. CRC Press, Boca Raton, pp 1–19

    Google Scholar 

  • Ravi M, Paramesh V, Kaviya SR, Anuradha E, Solomon FD (2015) 3D cell culture systems: advantages and applications. J Cell Physiol 230:16–26

    CAS  CrossRef  PubMed  Google Scholar 

  • Relling MV, Evans WE (2015) Pharmacogenomics in the clinic. Nature 526:343–350

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Roden DM (2016) Cardiovascular pharmacogenomics: current status and future directions. J Hum Genet 61:79–85

    CAS  PubMed  CrossRef  Google Scholar 

  • Rozek LS, Dolinoy DC, Sartor MA, Omenn GS (2014) Epigenetics: relevance and implications for public health. Annu Rev Public Health 35:105–122

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Rudd P, Karlsson NG, Khoo K-H, Packer NH (2017) Glycomics and glycoproteomics. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, Darvill AG, Kinoshita T, Packer NH, Prestegard JH, Schnaar RL, Seeberger PH (eds) Essentials of glycobiology, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Rudolph NS (1995) Advances continue in production of proteins in transgenic animal milk. Genet Eng News 15:8–9

    Google Scholar 

  • Russell C, Rahman A, Mohammed AR (2013) Application of genomics, proteomics and metabolomics in drug discovery, development and clinic. Ther Deliv 4:395–413

    CAS  PubMed  CrossRef  Google Scholar 

  • Rybicki EP (2014) Plant-based vaccines against viruses. Virol J 11:205. https://doi.org/10.1186/s12985-014-0205-0

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Sabatier R, Gonçalves A, Bertucci F (2014) Personalized medicine: present and future of breast cancer management. Crit Rev Oncol Hematol 91:223–233

    PubMed  CrossRef  Google Scholar 

  • Sagner M, McNeil A, Puska P, Auffray C, Price ND, Hood L, Lavie CJ, Han Z, Chen Z, Brahmachari SK, McEwen BS, Soares MB, Balling R, Epel E, Arena R (2017) The P4 health spectrum – a predictive, preventive, personalized and participatory continuum for promoting healthspan. Prog Cardiovasc Dis 59:506–521

    PubMed  CrossRef  Google Scholar 

  • Sanford LP, Doetschman T (2014) Gene targeting in embryonic stem cells, I: history and methodology. In: Pinkert CA (ed) Transgenic animal technology, 3rd edn. Elsevier, London, pp 109–140

    CrossRef  Google Scholar 

  • Schneider MV (2014) Defining systems biology: a brief overview of the term and field. Drug Discov Today 19:140–144

    CrossRef  CAS  Google Scholar 

  • Schneider HC, Klabunde T (2013) Understanding drugs and diseases by systems biology. Bioorg Med Chem Lett 23:1168–1176

    CAS  PubMed  CrossRef  Google Scholar 

  • Schneider D, Riegman PH, Cronin M, Negrouk A, Moch H, Balling R, Penault-Llorca F, Zatloukal K, Horgan D (2016) Accelerating the development and validation of new value-based diagnostics by leveraging biobanks. Public Health Genomics 19:160–169

    PubMed  CrossRef  Google Scholar 

  • Schumacher S, Muekusch S, Seitz H (2015) Up-to-date applications of microarrays and their way to commercialization. Microarrays 4:196–213

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Schweiger MR, Barmeyer C, Timmermann B (2013) Genomics and epigenomics: new promises of personalized medicine for cancer patients. Brief Funct Genomics 12:411–421

    PubMed  CrossRef  Google Scholar 

  • Selimović S, Dokmeci MR, Khademhosseini A (2013) Organs-on-a-chip for drug discovery. Curr Opin Pharmacol 13:829–833

    PubMed  CrossRef  CAS  Google Scholar 

  • Servick K (2017) Embryo editing takes another step to clinic. Science 357:436–437

    CAS  PubMed  CrossRef  Google Scholar 

  • Shendure J, Balasubramanian S, Church GM, Gilbert W, Rogers J, Schloss JA, Waterston RH (2017) DNA sequencing at 40: past, present and future. Nature 550:345–353

    CAS  PubMed  CrossRef  Google Scholar 

  • Sheridan C (2017) CRISPR therapeutics push into human testing. Nat Biotechnol 35:3–5

    CAS  PubMed  CrossRef  Google Scholar 

  • Sinha G (2017) The organoid architect. Science 357:746–749

    CAS  PubMed  CrossRef  Google Scholar 

  • Skardal A, Shupe T, Atala A (2016) Organoid-on-a-chip and body-on-a-chip systems for drug screening and disease modeling. Drug Discov Today 21:1399–1411

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  • Smaglik P (2017) The genetic microscope. Nature 545:S25–S27

    CAS  PubMed  CrossRef  Google Scholar 

  • Spanogiannopoulos P, Bess EN, Carmody RN, Turnbaugh PJ (2016) The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nat Microbiol 14:273–287

    CAS  CrossRef  Google Scholar 

  • Tang H, Mayampurath A, Yu CY, Mechref Y (2014) Bioinformatics protocols in glycomics and glycoproteomics. Curr Protoc Protein Sci 76:1–7

    Google Scholar 

  • The Cancer Genome Atlas Research Network (2014) Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507:315–322

    CrossRef  CAS  Google Scholar 

  • The International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    CrossRef  Google Scholar 

  • Thompson MD, Cole DE, Capra V, Siminovitch KA, Rovati GE, Burnham WM, Rana BK (2014) Pharmacogenetics of the G protein-coupled receptors. Methods Mol Biol 1175:189–242

    PubMed  CrossRef  CAS  Google Scholar 

  • Tuddenham S, Sears CL (2015) The intestinal microbiome and health. Curr Opin Infect Dis 28:464–470

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • U.S. DOE (2018) Human genome project information. Available at: http://web.ornl.gov/sci/techresources/Human_Genome/hg5yp/index.shtml. Accessed 11 Jan 2018

  • U.S. National Academies (2011) Toward precision medicine: building a knowledge network for biomedical research and a new taxonomy of disease. The National Academies Press, Washington, DC, pp 1–4

    Google Scholar 

  • van Duinen V, Trietsch SJ, Joore J, Vulto P, Hankemeier T (2015) Microfluidic 3D cell culture: from tools to tissue models. Curr Opin Biotechnol 35:118–126

    PubMed  CrossRef  CAS  Google Scholar 

  • van Rooij T, Wilson DM, Marsh S (2012) Personalized medicine policy challenges: measuring clinical utility at point of care. Expert Rev Pharmacoecon Outcomes Res 12:289–295

    PubMed  CrossRef  Google Scholar 

  • Venter JC et al (2001) The sequence of the human genome. Science 291:1304–1351

    CAS  PubMed  CrossRef  Google Scholar 

  • Vijaya Bhaskar Reddy A, Yusop Z, Jaafar J, Madhavi V, Madhavi G (2016) Advances in drug discovery: impact of genomics and role of analytical instrumentation. Curr Drug Discov Technol 13:211–224

    PubMed  CrossRef  CAS  Google Scholar 

  • Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, Yang J (2017) 10 years of GWAS discovery: biology, function, and translation. Am J Hum Genet 101:5–22

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Waltz E (2017) When pig organs will fly. Nat Biotechnol 35:1133–1138

    CAS  PubMed  CrossRef  Google Scholar 

  • Wetterstrand KA (2017) DNA sequencing costs: data from the NHGRI genome sequencing program (GSP) Available at: www.genome.gov/sequencingcostsdata. Accessed 23 Dec 2017

  • Wiktorowicz JE, Brasier AR (2016) Introduction to clinical proteomics. Adv Exp Med Biol 919:435–441

    CAS  PubMed  CrossRef  Google Scholar 

  • Wildt S, Gerngross TU (2005) The humanization of N-glycosylation pathways in yeast. Nat Rev Microbiol 3:119–126

    CAS  PubMed  CrossRef  Google Scholar 

  • Wishart DS, Mandal R, Stanislaus AS, Ramirez-Gaona M (2016) Cancer metabolomics and the human metabolome database. Metabolites 6:1–17

    CrossRef  CAS  Google Scholar 

  • Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vazquez-Fresno R, Sajed T, Johnson D, Li C, Karu N, Sayeeda Z, Lo E, Assempour N, Berjanski M, Singhai S, Arndt D, Liang Y, Badran H, Grant J, Serra-Cayuela A, Liu Y, Mandal R, Neveu V, Pon A, Knox C, Wilson M, Manach C, Scalbert A (2018) HMDB: the human metabolome database for 2018. Nucleic Acids Res 46:D608–D617

    CAS  PubMed  CrossRef  Google Scholar 

  • Wright FA et al (2001) A draft annotation and overview of the human genome. Genome Biol 2:1–18

    Google Scholar 

  • Yadav M, Verma MK, Chauhan NS (2017) A review of metabolic potential of human gut microbiome in human nutrition. Arch Microbiol 200(2):203–217

    PubMed  CrossRef  CAS  Google Scholar 

  • Zanders ED (2012) Overview of chemical genomics and proteomics. Methods Mol Biol 800:3–10

    CAS  PubMed  CrossRef  Google Scholar 

  • Zdanowicz MM (2017) Pharmacogenomics: past, present, and future. In: Zdanowicz MM (ed) Concepts in pharmacogenomics. American Society of Health-systems Pharmacists, Bethesda, pp 3–18

    Google Scholar 

  • Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F (2015) Cpf1 is a single RNA-guided endo- nuclease of a class 2 CRISPR-Cas system. Cell 163:759–771

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Zhang B, Radisic M (2017) Organ-on-a-chip devices advance to market. Lab Chip 17:2395–2420

    CAS  PubMed  CrossRef  Google Scholar 

  • Zhang HM, Nan ZR, Hui GQ, Liu XH, Sun Y (2014) Application of genomics and proteomics in drug target discovery. Genet Mol Res 13:198–204

    CAS  PubMed  CrossRef  Google Scholar 

  • Zhao Y, Brasier AR (2015) Qualification and verification of protein biomarker candidates. Adv Exp Med Biol 919:493–514

    CrossRef  CAS  Google Scholar 

  • Zhao X, Modur V, Carayannopoulos LN, Laterza OF (2015) Biomarkers in pharmaceutical research. Clin Chem 61:1342–1353

    Google Scholar 

  • Zhao YY, Cheng XL, Lin RC, Wei F (2015a) Lipidomics applications for disease biomarker discovery in mammal models. Biomark Med 9:153–168

    CAS  PubMed  CrossRef  Google Scholar 

  • Zhao YY, Miao H, Cheng XL, Wei F (2015b) Lipidomics: novel insight into the biochemical mechanism of lipid metabolism and dysregulation-associated disease. Chem Biol Interact 240:220–238

    CAS  PubMed  CrossRef  Google Scholar 

  • Zhu Y, Xiao T, Lei S, Zhou F, Wang MW (2015) Application of chemical biology in target identification and drug discovery. Arch Pharm Res 38:1642–1650

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Acknowledgments

I wish to acknowledge the tremendous contribution of Dr. Arlene Marie Sindelar, my wife, to some of the graphics found in figures in all five editions of this textbook.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Sindelar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Sindelar, R.D. (2019). Genomics, Other “OMIC” Technologies, Precision Medicine, and Additional Biotechnology-Related Techniques. In: Crommelin, D., Sindelar, R., Meibohm, B. (eds) Pharmaceutical Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-00710-2_9

Download citation