Skip to main content

Insulin

  • Chapter
  • First Online:
Pharmaceutical Biotechnology

Abstract

Insulin was discovered by Banting and Best in 1921. Soon afterwards, manufacturing processes were developed to extract the insulin from porcine and bovine pancreata. From 1921 to 1980, efforts were directed at increasing the purity of the insulin and providing different formulations for enhanced glucose control by altering time action. Purification was improved by optimizing extraction and processing conditions and by implementing chromatographic processes (size exclusion, ion exchange, and reversed-phase). These improvements reduce the levels of both general protein impurities and insulin-related proteins such as proinsulin and insulin polymers. Formulation development focused on improving chemical stability by moving from acidic to neutral formulations and by modifying the time-action profile through the use of various levels of zinc and protamine. The evolution of recombinant DNA technology led to the widespread availability of human insulin, which has eliminated issues with sourcing constraints while providing the patient with an exogenous source of native insulin. Combining the improved purification methodologies and recombinant DNA technology, manufacturers of insulin are now able to provide the purest human insulin ever made available, >98% pure. Further advances in rDNA technology, coupled with a detailed understanding of the molecular properties of insulin and knowledge of its endogenous secretion profile, enabled the development of insulin analogs with improved pharmacology relative to existing human insulin products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson JH Jr, Brunelle RL, Keohane P, Koivisto VA, Trautmann ME, Vignati L, DiMarchi R (1997) Mealtime treatment with insulin analog improves postprandial hyperglycemia and hypoglycemia in patients with non-insulin-dependent diabetes mellitus. Multicenter Insulin Lispro Study Group. Arch Intern Med 157:1249–1255

    Article  CAS  PubMed  Google Scholar 

  • Arnolds S, Rave K, Hövelmann U, Fischer A, Sert-Langeron C, Heise T (2010) Insulin glulisine has a faster onset of action compared with insulin aspart in healthy volunteers. Exp Clin Endocrinol Diabetes 118(9):662–664

    Article  CAS  PubMed  Google Scholar 

  • Bakaysa DL, Radziuk J, Havel HA, Brader ML, Li S, Dodd SW, Beals JM, Pekar AH, Brems DN (1996) Physicochemical basis for the rapid time-action of LysB28ProB29-insulin: dissociation of a protein-ligand complex. Protein Sci 5(12):2521–2531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker EN, Blundell TL, Cutfield JF, Cutfield SM, Dodson EJ, Dodson GG, Hodgkin DM, Hubbard RE, Isaacs NW, Reynolds CD, Sakabe K, Sakabe N, Vijayan NM (1988) The structure of 2Zn pig insulin crystals at 1.5 Å resolution. Philos Trans R Soc Lond Ser B Biol Sci 319:369–456

    Article  CAS  Google Scholar 

  • Balschmidt P (1996) AspB28 insulin crystals. US Patent 5,547,930

    Google Scholar 

  • Becker RH, Dahmen R, Bergmann K, Lehmann A, Jax T, Heise T (2015) New insulin glargine 300 units mL−1 provides a more even activity profile and prolonged glycemic control at steady state compared with insulin glargine 100 units mL−1. Diabetes Care 38:637–643

    CAS  PubMed  Google Scholar 

  • Bell DS, Clements RS Jr, Perentesis G, Roddam R, Wagenknecht L (1991) Dosage accuracy of self-mixed vs premixed insulin. Arch Intern Med 151:2265–2269

    Article  CAS  PubMed  Google Scholar 

  • Binder C (1969) Absorption of injected insulin. a clinical-pharmacologic study. Acta Pharmacol Toxicol (Copenh) 27(Suppl 2):1–84

    Google Scholar 

  • Binder C, Lauritzen T, Faber O, Pramming S (1984) Insulin pharmacokinetics. Diabetes Care 7:188–199

    Article  PubMed  Google Scholar 

  • Birkeland KI, Home PD, Wendisch U, Ratner RE, Johansen T, Endahl LA, Lyby K, Jendle JH, Roberts AP, DeVries JH, Meneghini LF (2011) Insulin degludec in type 1 diabetes: a randomized controlled trial of a new-generation ultra-long-acting insulin compared with insulin glargine. Diabetes Care 34:661–665

    Article  PubMed  PubMed Central  Google Scholar 

  • Bliss M (1982) Who discovered insulin. In: The discovery of insulin. McClelland and Stewart Limited, Toronto, pp 189–211

    Chapter  Google Scholar 

  • Boldo A, Comi RJ (2012) Clinical experience with U500 insulin: risks and benefits. Endocr Pract 18:56–61

    Article  PubMed  Google Scholar 

  • Brackenridge B (1994) Diabetes medicines: insulin. In: Brackenridge B (ed) Managing your diabetes. Eli Lilly and Company, Indianapolis, pp 36–50

    Google Scholar 

  • Brader ML, Dunn MF (1991) Insulin hexamers: new conformations and applications. Trends Biochem Sci 16:341–345

    Article  CAS  PubMed  Google Scholar 

  • Brange J (1987a) Insulin preparations. In: Galenics of insulin. Springer, Berlin, pp 17–39

    Chapter  Google Scholar 

  • Brange J (1987b) Production of bovine and porcine insulin. In: Galenics of insulin. Springer, Berlin, pp 1–5

    Chapter  Google Scholar 

  • Brange J (1987c) Insulin preparations. In: Galenics of insulin. Springer, Berlin, pp 58–60

    Chapter  Google Scholar 

  • Brange J, Langkjaer L (1992) Chemical stability of insulin. 3. Influence of excipients, formulation, and pH. Acta Pharm Nord 4:149–158

    CAS  PubMed  Google Scholar 

  • Brange J, Ribel U, Hansen JF, Dodson G, Hansen MT, Havelund S, Melberg SG, Norris F, Norris K, Snel L et al (1988) Monomeric insulins obtained by protein engineering and their medical implications. Nature 333:679–682

    Article  CAS  PubMed  Google Scholar 

  • Brange J, Owens DR, Kang S, Vølund A (1990) Monomeric insulins and their experimental and clinical applications. Diabetes Care 13:923–954

    Article  CAS  PubMed  Google Scholar 

  • Brange J, Havelund S, Hougaard P (1992a) Chemical stability of insulin. 2. Formation of higher molecular weight transformation products during storage of pharmaceutical preparations. Pharm Res 9:727–734

    Article  CAS  PubMed  Google Scholar 

  • Brange J, Langkjaer L, Havelund S, Vølund A (1992b) Chemical stability of insulin. 1. Hydrolytic degradation during storage of pharmaceutical preparations. Pharm Res 9:715–726

    Article  CAS  PubMed  Google Scholar 

  • Brems DN, Alter LA, Beckage MJ, Chance RE, DiMarchi RD, Green LK, Long HB, Pekar AH, Shields JE, Frank BH (1992) Altering the association properties of insulin by amino acid replacement. Protein Eng 6:527–533

    Article  Google Scholar 

  • Brennan TV, Clarke S (1994) Deamidation and isoasparate formation in model synthetic peptides. In: Aswad DW (ed) Deamidation and isoaspartate formation in peptides and proteins. CRC Press, Boca Raton, pp 65–90

    Google Scholar 

  • Cernea S, Kidron M, Wohlgelernter J, Modi P, Raz I (2004) Comparison of pharmacokinetic and pharmacodynamic properties of single-dose oral insulin spray and subcutaneous insulin injection in healthy subjects using the euglycemic clamp technique. Clin Ther 26:2084–2091

    Article  CAS  PubMed  Google Scholar 

  • Chacra AR, Kipnes M, Ilag LL, Sarwat S, Giaconia J, Chan J (2010) Comparison of insulin lispro protamine suspension and insulin detemir in basal-bolus therapy in patients with type 1 diabetes. Diabet Med 27:563–569

    Article  CAS  PubMed  Google Scholar 

  • Charman SA, McLennan DN, Edwards GA, Porter CJH (2001) Lymphatic absorption is a significant contributor to the subcutaneous bioavailability of insulin in a sheep model. Pharm Res 18:1620–1626

    Article  CAS  PubMed  Google Scholar 

  • Ciszak E, Beals JM, Frank BH, Baker JC, Carter ND, Smith GD (1995) Role of the C-terminal B-chain residues in insulin assembly: the structure of hexameric LysB28ProB29-human insulin. Structure 3:615–622

    Article  CAS  PubMed  Google Scholar 

  • Dailey G, Rosenstock J, Moses RG, Ways K (2004) Insulin glulisine provides improved glycemic control in patients with type 2 diabetes. Diabetes Care 27:2363–2368

    Article  CAS  PubMed  Google Scholar 

  • Darrington RT, Anderson BD (1995) Effects of insulin concentration and self-association on the partitioning of its A-21 cyclic anhydride intermediate to desamido insulin and covalent dimer. Pharm Res 12:1077–1084

    Article  CAS  PubMed  Google Scholar 

  • Davis SN, Thompson CJ, Brown MD, Home PD, Alberti KG (1991) A comparison of the pharmacokinetics and metabolic effects of human regular and NPH mixtures. Diabetes Res Clin Pract 13:107–117

    Article  CAS  PubMed  Google Scholar 

  • de la Peña A, Riddle M, Morrow LA, Jiang HH, Linnebjerg H, Scott A, Win KM, Hompesch M, Mace KF, Jacobson JG, Jackson JA (2011) Pharmacokinetics and pharmacodynamics of high-dose human regular U-500 insulin versus human regular U-100 insulin in healthy obese subjects. Diabetes Care 34:2496–2501

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de la Pena A, Seger M, Soon D, Scott AJ, Reddy SR, Dobbins MA et al (2016) Bioequivalence and comparative pharmacodynamics of insulin lispro 200 U/mL relative to insulin lispro (Humalog (R)) 100 U/mL. Clin Pharmacol Drug Dev 5:69–75

    Article  PubMed  CAS  Google Scholar 

  • Deckert T (1980) Intermediate-acting insulin preparations: NPH and lente. Diabetes Care 3:623–626

    Article  CAS  PubMed  Google Scholar 

  • DeFelippis MR, Bakaysa DL, Bell MA, Heady MA, Li S, Pye S, Youngman KM, Radziuk J, Frank BH (1998) Preparation and characterization of a cocrystalline suspension of [LysB28, ProB29]-human insulin analogue. J Pharm Sci 87:170–176

    Article  CAS  PubMed  Google Scholar 

  • DeFelippis MR, Bell MA, Heyob JA, Storms SM (2006) In vitro stability of insulin lispro in continuous subcutaneous insulin infusion. Diabetes Technol Ther 8:358–368

    Article  CAS  PubMed  Google Scholar 

  • Derewenda U, Derewenda Z, Dodson EJ, Dodson GG, Reynolds CD, Smith GD, Sparks C, Swenson D (1989) Phenol stabilizes more helix in a new symmetrical zinc insulin hexamer. Nature 338:594–596

    Article  CAS  PubMed  Google Scholar 

  • Dodd SW, Havel HA, Kovach PM, Lakshminarayan C, Redmon MP, Sargeant CM, Sullivan GR, Beals JM (1995) Reversible adsorption of soluble hexameric insulin onto the surface of insulin crystals cocrystallized with protamine: an electrostatic interaction. Pharm Res 12:60–68

    Article  CAS  PubMed  Google Scholar 

  • Dreyer M, Prager R, Robinson A, Busch K, Ellis G, Souhami E, Van Leendert R (2005) Efficacy and safety of insulin glulisine in patients with type 1 diabetes. Horm Metab Res 37:702–707

    Article  CAS  PubMed  Google Scholar 

  • Eby E, Smolen L, Pitts A, Krueger LA, Grimm D (2014) Economic impact of converting from pen and 10-mL vial to 3-mL vial for insulin delivery in a hospital setting. Hosp Pharm 49(11):1033–1038

    Article  Google Scholar 

  • Edmondson G, Criswell J, Krueger L, Eby EL (2014) Economic impact of converting from 10-mL insulin vials to 3-mL vials and pens in a hospital setting. Am J Health-Syst Pharm 70:1485–1489

    Article  Google Scholar 

  • Fogelfeld L, Dharmalingam M, Robling K, Jones C, Swanson D, Jacober SJ (2010) A randomized, treat-to-target trial comparing insulin lispro protamine suspension and insulin detemir in insulin-naive patients with type 2 diabetes. Diabet Med 27:181–188

    Article  CAS  PubMed  Google Scholar 

  • Galloway JA (1988) Chemistry and clinical use of insulin. In: Galloway JA, Potvin JH, Shuman CR (eds) Diabetes mellitus, 9th edn. Lilly Research Laboratories, Indianapolis, pp 105–133

    Google Scholar 

  • Galloway JA, Chance RE (1994) Improving insulin therapy: achievements and challenges. Horm Metab Res 26:591–598

    Article  CAS  PubMed  Google Scholar 

  • Galloway JA, Spradlin CT, Nelson RL, Wentworth SM, Davidson JA, Swarner JL (1981) Factors influencing the absorption, serum insulin concentration, and blood glucose responses after injections of regular insulin and various insulin mixtures. Diabetes Care 4:366–376

    Article  CAS  PubMed  Google Scholar 

  • Galloway JA, Spradlin CT, Jackson RL, Otto DC, Bechtel LD (1982) Mixtures of intermediate-acting insulin (NPH and Lente) with regular insulin: an update. In: Skyler JS (ed) Insulin update: 1982. Exerpta Medica, Princeton, pp 111–119

    Google Scholar 

  • Gibney MA, Arce CH, Byron KJ, Hirsch LJ (2010) Skin and subcutaneous adipose layer thickness in adults with diabetes at sites used for insulin injections: implications for needle length recommendations. Curr Med Res Opin 26:1519–1530

    Article  CAS  PubMed  Google Scholar 

  • Goldman J, Carpenter FH (1974) Zinc binding, circular dichroism, and equilibrium sedimentation studies on insulin (bovine) and several of its derivatives. Biochemistry 13:4566–4574

    Article  CAS  PubMed  Google Scholar 

  • Goldman J, Trujillo JM (2017) iGlarLixi: a fixed-ratio combination of insulin glargine 100 U/mL and lixisenatide for the treatment of type 2 diabetes. Ann Pharmacother 51(11):990–999

    Article  CAS  PubMed  Google Scholar 

  • Gough SC, Jain R, Woo VC (2016) Insulin degludec/liraglutide (IDegLira) for the treatment of type 2 diabetes. Expert Rev Endocrinol Metab 11(1):7–19

    Article  CAS  PubMed  Google Scholar 

  • Hagedorn HC, Jensen BN, Krarup NB, Wodstrup I (1936) Protamine insulinate. JAMA 106:177–180

    Article  CAS  Google Scholar 

  • Hamaguchi T, Hashimoto Y, Miyata T, Kishikawa H, Yano T, Fukushima H, Shichiri M (1990) Effect of mixing short and intermediate NPH insulin or Zn insulin suspension acting human insulin on plasma free insulin levels and action profiles. J Jpn Diabet Soc 33:223–229

    Google Scholar 

  • Hardy TA, Andersen G, Meiffren G, Lamers D, Ranson A, Alluis B, Gaudier M, Soula O, Kazda C, Heise T, Bruce S (2017) Ultra-rapid BioChaperone Lispro (BCLIS) improves postprandial blood glucose (PPG) excursions vs. insulin Lispro (LIS) in a 14-day treatment study in subjects with type 1 diabetes (T1DM). Diabetes A249:964

    Google Scholar 

  • Havelund S, Plum A, Ribel U, Jonassen I, Vølund A, Markussen J, Kurtzhals P (2004) The mechanism of protraction of insulin detemir, a long-acting, acylated analog of human insulin. Pharm Res 21:1498–1504

    Article  CAS  PubMed  Google Scholar 

  • Havelund S, Ribel U, Hubálek F, Hoeg-Jensen T, Wahlund PO, Jonassen I (2015) Investigation of the Physico-chemical properties that enable co-formulation of basal insulin degludec with fast-acting insulin Aspart. Pharm Res 32(7):2250–2258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinemann L, Weyer C, Rave K, Stiefelhagen O, Rauhaus M, Heise T (1997) Comparison of the time-action profiles of U40- and U100-regular human insulin and the rapid-acting insulin analogue B28 Asp. Exp Clin Endocrinol Diabetes 105:140–144

    Article  CAS  PubMed  Google Scholar 

  • Heinemann L, Sinha K, Weyer C, Loftager M, Hirschberger S, Heise T (1999) Time-action profile of the soluble, fatty acid acylated, long-acting insulin analogue NN304. Diabet Med 16:332–338

    Article  CAS  PubMed  Google Scholar 

  • Heinemann L, Pfützner A, Heise T (2001) Alternative routes of administration as an approach to improve insulin therapy: update on dermal, oral, nasal and pulmonary insulin delivery. Curr Pharm Des 7:1327–1351

    Article  CAS  PubMed  Google Scholar 

  • Heise T, Weyer C, Serwas A, Heinrichs S, Osinga J, Roach P, Woodworth J, Gudat W, Heinemann L (1998) Time-action profiles of novel premixed preparations of insulin lispro and NPL insulin. Diabetes Care 21:800–803

    Article  CAS  PubMed  Google Scholar 

  • Heise T, Nosek L, Rønn BB, Endahl L, Heinemann L, Kapitza C, Draeger E (2004) Lower within-subject variability of insulin detemir in comparison to NPH insulin and insulin glargine in people with type 1 diabetes. Diabetes 53:1614–1620

    Article  CAS  PubMed  Google Scholar 

  • Heise T, Nosek L, Spitzer H, Heinemann L, Niemöller E, Frick AD, Becker RH (2007) Insulin glulisine: a faster onset of action compared with insulin lispro. Diabetes Obes Metab 9(5):746–753

    Article  CAS  PubMed  Google Scholar 

  • Heise T, Hövelmann U, Brøndsted L, Adrian CL, Nosek L, Haahr H (2015) Faster-acting insulin aspart: earlier onset of appearance and greater early pharmacokinetic and pharmacodynamic effects than insulin aspart. Diabetes Obes Metab 17(7):682–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heise T, Mathieu C (2017) Impact of the mode of protraction of basal insulin therapies on their pharmacokinetic and pharmacodynamic properties and resulting clinical outcomes. Diabetes Obes Metab 19(1):3–12

    Article  CAS  PubMed  Google Scholar 

  • Heise T, Stender-Petersen K, Hövelmann U, Jacobsen JB, Nosek L, Zijlstra E, Haahr H (2017) Pharmacokinetic and Pharmacodynamic properties of faster-acting insulin Aspart versus insulin Aspart across a clinically relevant dose range in subjects with type 1 diabetes mellitus. Clin Pharmacokinet 56(6):649–660

    Article  CAS  PubMed  Google Scholar 

  • Hermansen K, Madsbad S, Perrild H, Kristensen A, Axelsen M (2001) Comparison of the soluble basal insulin analog insulin detemir with NPH insulin: a randomized open crossover trial in type 1 diabetic subjects on basal-bolus therapy. Diabetes Care 24:296–301

    Article  CAS  PubMed  Google Scholar 

  • Hirsch IB, Franek E, Mersebach H, Bardtrum L, Hermansen K (2017) Safety and efficacy of insulin degludec/insulin aspart with bolus mealtime insulin aspart compared with standard basal-bolus treatment in people with type 1 diabetes: 1-year results from a randomized clinical trial (BOOST® T1). Diabet Med 34(2):167–173

    Article  CAS  PubMed  Google Scholar 

  • Hjorth CF, Hubalek F, Andersson J, Poulsen C, Otzen D, Naver H (2015) Purification and identification of high molecular weight products formed during storage of neutral formulation of human insulin. Pharm Res 32:2072–2085

    Article  CAS  PubMed  Google Scholar 

  • Hjorth CF, Norrman M, Wahlund P, Benie AJ, Petersen BO, Jessen CM, Pedersen TA, Vestergaard K, Steensgaard DB, Pedersen JS, Naver H, Hubalek F, Poulsen C, Otsen D (2016) Structure, aggregation, and activity of a covalent insulin dimer formed during storage of neutral formulation of human insulin. J Pharm Sci 105:1376–1386

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann JA, Chance RE, Johnson MG (1990) Purification and analysis of the major components of chum salmon protamine contained in insulin formulations using high-performance liquid chromatography. Protein Expr Purif 1:127–133

    Article  CAS  PubMed  Google Scholar 

  • Holleman F, Schmitt H, Rottiers R, Rees A, Symanowski S, Anderson JH (1997) Reduced frequency of severe hypoglycemia and coma in well-controlled IDDM patients treated with insulin lispro. The Benelux-UK Insulin Lispro Study Group. Diabetes Care 20:1827–1832

    Article  CAS  PubMed  Google Scholar 

  • Home PD (2012) The pharmacokinetics and pharmacodynamics of rapid-acting insulin analogues and their clinical consequences. Diabetes Obes Metab 14:780–788

    Article  CAS  PubMed  Google Scholar 

  • Hompesch M, Ocheltree SM, Wondmagegnehu ET, Morrow LA, Kollmeier AP, Campaigne BN, Jacober SJ (2009) Pharmacokinetics and pharmacodynamics of insulin lispro protamine suspension compared with insulin glargine and insulin detemir in type 2 diabetes. Curr Med Res Opin 25:2679–2687

    Article  CAS  PubMed  Google Scholar 

  • Howey DC, Bowsher RR, Brunelle RL, Woodworth JR (1994) [Lys(B28), Pro(B29)]-human insulin: a rapidly-absorbed analogue of human insulin. Diabetes 43:396–402

    Article  CAS  PubMed  Google Scholar 

  • Hughes E (2016) IDegLira: Redefining insulin optimisation using a single injection in patients with type 2 diabetes. Primary Care Diabetes 10(3):202–209

    Article  PubMed  Google Scholar 

  • Jansen R, Dzwolak W, Winter R (2005) Amyloidogenic self-assembly of insulin aggregates probed by high resolution atomic force microscopy. Biophys J 88:1344–1353

    Article  CAS  PubMed  Google Scholar 

  • Janssen MM, Casteleijn S, Devillé W, Popp-Snijders C, Roach P, Heine RJ (1997) Nighttime insulin kinetics and glycemic control in type 1 diabetic patients following administration of an intermediate-acting lispro preparation. Diabetes Care 20:1870–1873

    Article  CAS  PubMed  Google Scholar 

  • Johnson JL, Downes JM, Obi CK, Asante NB (2017) Novel concentrated insulin delivery devices: developments for safe and simple dose conversions. J Diabetes Sci Technol 11(3):618–622

    Article  CAS  PubMed  Google Scholar 

  • Jonassen I, Havelund S, Hoeg-Jensen T, Steensgaard DB, Wahlund PO, Ribel U (2012) Design of the novel protraction mechanism of insulin degludec, an ultra-long-acting basal insulin. Pharm Res 29(8):2104–2114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaarsholm NC, Havelund S, Hougaard P (1990) Ionization behavior of native and mutant insulins: pK perturbation of B13-Glu in aggregated species. Arch Biochem Biophys 283:496–502

    Article  CAS  PubMed  Google Scholar 

  • Kapitza C, Leohr J, Liu R, Reddy S, Dellva MA, Matzopoulos M, Knadler MP, Loh MT, Hardy T, Kazda C (2017) A novel formulation of insulin Lispro containing citrate and Treprostinil shows significantly faster absorption and an improvement in postprandial glucose excursions vs. Humalog® in patients with T2DM. Diabetes 66(suppl 1). 978-P, A253

    Google Scholar 

  • Kazda C, Leohr J, Liu R, Dellva MA, Lim ST, Loh MT, Knadler MP, Hardy T, Plum-Moerschel L (2017) A novel formulation of insulin Lispro containing citrate and Treprostinil shows faster absorption and improved postprandial glucose excursions vs. Humalog® in patients with T1DM. Diabetes 66(suppl 1). 959-P, A247

    Google Scholar 

  • Korsatko S, Deller S, Koehler G, Mader JK, Neubauer K, Adrian CL et al (2013) A comparison of the steady-state pharmacokinetic and pharmacodynamic profiles of 100 and 200 U/mL formulations of ultra-long-acting insulin degludec. Clin Drug Investig 33:515–521

    Article  CAS  PubMed  Google Scholar 

  • Krayenbuhl C, Rosenberg T (1946) Crystalline protamine insulin. Rep Steno Hosp (Kbh) 1:60–73

    Google Scholar 

  • Kroeff EP, Owen RA, Campbell EL, Johnson RD, Marks HI (1989) Production scale purification of biosynthetic human insulin by reversed-phase high-performance liquid chromatography. J Chromatogr 461:45–61

    Article  CAS  PubMed  Google Scholar 

  • Kurtz AB, Gray RS, Markanday S, Nabarro JD (1983) Circulating IgG antibody to protamine in patients treated with protamine-insulins. Diabetologia 25:322–324

    Article  CAS  PubMed  Google Scholar 

  • Lamb YN, Syed YY (2018) LY2963016 insulin glargine: a review in type 1 and 2 diabetes. BioDrugs 32(1):91–98

    Article  CAS  PubMed  Google Scholar 

  • Lane WS, Cochran EK, Jackson JA, Scism-Bacon JL, Corey IB, Hirsch IB, Skyler JS (2009) High-dose insulin therapy: is it time for U-500 insulin? Endocr Pract 15:71–79

    Article  PubMed  Google Scholar 

  • Lau IT, Lee KF, So WY, Tan K, Yeung VTF (2017) Insulin glargine 300 U/mL for basal insulin therapy in type 1 and type 2 diabetes mellitus. Diabetes Metab Syndr Obes 30(10):273–284

    Article  Google Scholar 

  • Modi P, Mihic M, Lewin A (2002) The evolving role of oral insulin in the treatment of diabetes using a novel RapidMistSystem. Diabetes Metab Res Rev 18(Suppl 1):S38–S42

    Article  CAS  PubMed  Google Scholar 

  • Nell LJ, Thomas JW (1988) Frequency and specificity of protamine antibodies in diabetic and control subjects. Diabetes 37:172–176

    Article  CAS  PubMed  Google Scholar 

  • Nielsen L, Khurana R, Coats A, Frokjaer S, Brange J, Vyas S, Uversky VN, Fink AL (2001) Effect of environmental factors on the kinetics of insulin fibril formation: elucidation of the molecular mechanism. Biochemistry 40:6036–6046

    Article  CAS  PubMed  Google Scholar 

  • Ovalle F, Segal AR, Anderson JE, Cohen MR, Morwick TM, Jackson JA (2018) Understanding concentrated insulins: a systematic review of randomized controlled trials. Curr Med Res Opin 10:1–15

    Google Scholar 

  • Park SW, Bebakar WM, Hernandez PG, Macura S, Hersløv ML, de la Rosa R (2017) Insulin degludec/insulin aspart once daily in type 2 diabetes: a comparison of simple or stepwise titration algorithms (BOOST® : SIMPLE USE). Diabet Med 34(2):174–179

    Article  CAS  PubMed  Google Scholar 

  • Pekar AH, Frank BH (1972) Conformation of proinsulin. A comparison of insulin and proinsulin self-association at neutral pH. Biochemistry 11:4013–4016

    Article  CAS  PubMed  Google Scholar 

  • Peters AL, Pollom RD, Zielonka JS, Carey MA, Edelman SV (2015) Biosimilar and new versions. Endocr Pract 21(12):1387–1394

    Article  PubMed  Google Scholar 

  • Porcellati F, Bolli GB, Fanelli CG (2011) Pharmacokinetics and pharmacodynamics of basal insulins. Diabetes Technol Ther 13(Suppl 1):S15–S24

    Article  PubMed  Google Scholar 

  • Porter CJ, Charman SA (2000) Lymphatic transport of proteins after subcutaneous administration. J Pharm Sci 89:297–310

    Article  CAS  PubMed  Google Scholar 

  • Reid TS, Schafer F, Brusko C (2017) Higher concentration insulins: an overview of clinical considerations. Postgrad Med 129(5):554–562

    Article  PubMed  Google Scholar 

  • Ritzel R, Roussel R, Bolli GB, Vinet L, Brulle-Wohlhueter C, Glezer S, Yki-Järvinen H (2015) Patient-level meta-analysis of the EDITION 1, 2 and 3 studies: glycaemic control and hypoglycaemia with new insulin glargine 300 U/ml versus glargine 100 U/ml in people with type 2 diabetes. Diabetes Obes Metab 17(9):859–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson KE, Glazer NB, Campbell RK (2000) The latest developments in insulin injection devices. Diabetes Educ 26:135–152

    Article  CAS  PubMed  Google Scholar 

  • Rodbard HW, Buse JB, Woo V, Vilsbøll T, Langbakke IH, Kvist K, Gough SC (2016) Benefits of combination of insulin degludec and liraglutide are independent of baseline glycated haemoglobin level and duration of type 2 diabetes. Diabetes Obes Metab 18(1):40–48

    Article  CAS  PubMed  Google Scholar 

  • Schade DS, Santiago JV, Skyler JS, Rizza RA (1983) Intensive insulin therapy. Medical Examination Publishing, Princeton, p 24

    Google Scholar 

  • Segal AR, Brunner JE, Burch FT, Jackson JA (2010) Use of concentrated insulin human regular (U-500) for patients with diabetes. Am J Health Syst Pharm 67:1526–1535

    Article  CAS  PubMed  Google Scholar 

  • Senstius J, Harboe E, Westermann H (2007a) In vitro stability of insulin aspart in simulated continuous subcutaneous insulin infusion using a MiniMed 508 pump. Diabetes Technol Ther 9:75–79

    Article  CAS  PubMed  Google Scholar 

  • Senstius J, Poulsen C, Hvass A (2007b) Comparison of in vitro stability for insulin aspart and insulin glulisine during simulated use in infusion pumps. Diabetes Technol Ther 9:517–521

    Article  CAS  PubMed  Google Scholar 

  • Sharrow SD, Glass LC, Dobbins MA (2012) 14-day in vitro chemical stability of insulin lispro in the MiniMed paradigm pump. Diabetes Technol Ther 14:264–270

    Article  CAS  PubMed  Google Scholar 

  • Soula O, Soula R, Soula G (2014) Fast-acting insulin formulations, US8669227

    Google Scholar 

  • Steensgaard DB, Schluckebier G, Strauss HM, Norrman M, Thomsen JK, Friderichsen AV, Havelund S, Jonassen I (2013) Ligand-controlled assembly of hexamers, dihexamers, and linear multihexamer structures by the engineered acylated insulin degludec. Biochemistry 52(2):295–309

    Article  CAS  PubMed  Google Scholar 

  • Strojek K, Shi C, Carey MA, Jacober SJ (2010) Addition of insulin lispro protamine suspension or insulin glargine to oral type 2 diabetes regimens: a randomized trial. Diabetes Obes Metab 12:916–922

    Article  CAS  PubMed  Google Scholar 

  • Supersaxo A, Hein WR, Steffen H (1990) Effect of molecular weight on the lymphatic absorption of water-soluble compounds following subcutaneous administration. Pharm Res 7:167–169

    Article  CAS  PubMed  Google Scholar 

  • USP Monographs: Insulin (2013) USP36-NF31: 3911–3913

    Google Scholar 

  • Vague P, Selam JL, Skeie S, De Leeuw I, Elte JW, Haahr H, Kristensen A, Draeger E (2003) Insulin detemir is associated with more predictable glycemic control and reduced risk of hypoglycemia than NPH insulin in patients with type 1 diabetes on a basal-bolus regimen with premeal insulin aspart. Diabetes Care 26:590–596

    Article  CAS  PubMed  Google Scholar 

  • Waldhäusl W, Bratusch-Marrain P, Gasic S, Kom A, Nowotny P (1979) Insulin production rate following glucose ingestion estimated by splanchnic C-peptide output in normal man. Diabetologia 17:221–227

    Article  PubMed  Google Scholar 

  • Weyer C, Heise T, Heinemann L (1997) Insulin aspart in a 30/70 premixed formulation. Pharmacodynamic properties of a rapid-acting insulin analog in stable mixture. Diabetes Care 20:1612–1614

    Article  CAS  PubMed  Google Scholar 

  • Whittingham JL, Edwards DJ, Antson AA, Clarkson JM, Dodson GG (1998) Interactions of phenol and m-cresol in the insulin hexamer, and their effect on the association properties of B28 pro → Asp insulin analogues. Biochemistry 37:11516–11523

    Article  CAS  PubMed  Google Scholar 

  • Whittingham JL, Jonassen I, Havelund S, Roberts SM, Dodson EJ, Verma CS, Wilkinson AJ, Dodson GG (2004) Crystallographic and solution studies of N-lithocholyl insulin: a new generation of prolonged-acting human insulins. Biochemistry 43:5987–5995

    Article  CAS  PubMed  Google Scholar 

  • Wysham C, Hood RC, Warren ML, Wang T, Morwick TM, Jackson JA (2016) Endocr Pract 22(6):653–665

    Article  PubMed  Google Scholar 

  • Ziesmer AE, Kelly KC, Guerra PA, George KG, Dunn KL (2012) U500 regular insulin use in insulin-resistant type 2 diabetic veteran patients. Endocr Pract 18:34–38

    Article  PubMed  Google Scholar 

Suggested Reading

  • American Diabetes Association (2011) Practical insulin: a handbook for prescribing providers, 3rd edn. American Diabetes Association, New York

    Google Scholar 

  • Beals JM (2015) Insulin analogs—“improving the therapy of diabetes”. In: Fischer J, Rotella DP (eds) Successful drug discovery, vol 1. Wiley, Hoboken

    Google Scholar 

  • Bliss M (1982) The discovery of insulin. McClelland and Stewart Limited, Toronto

    Google Scholar 

  • Brange J (1987) Galenics of insulin. Springer, Berlin

    Book  Google Scholar 

  • Burant C (ed) (2008) Medical management of type 2 diabetes, 6th edn. American Diabetes Association, New York

    Google Scholar 

  • Cooper T, Ainsburg A (2010) Breakthrough: Elizabeth Hughes, the discovery of insulin, and the making of a medical miracle. St. Martin’s Press, New York

    Google Scholar 

  • Galloway JA, Potvin JH, Shuman CR (1988) Diabetes mellitus, 9th edn. Lilly Research Laboratories, Indianapolis

    Google Scholar 

  • Wolfsdorf JI (2009) Intensive diabetes management, 4th edn. American Diabetes Association, New York

    Google Scholar 

  • Zaykov AN, Mayer JP, DiMarchi RD (2016) Pursuit of a perfect insulin. Nat Rev Drug Discov 15(6):425–439

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Beals .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beals, J.M., DeFelippis, M.R., Paavola, C.D., Allen, D.P., Garg, A., Bruce Baldwin, D. (2019). Insulin. In: Crommelin, D., Sindelar, R., Meibohm, B. (eds) Pharmaceutical Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-00710-2_18

Download citation

Publish with us

Policies and ethics