Alahi, A., Ortiz, R., Vandergheynst, P.: FREAK: fast retina keypoint. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2012, pp. 510–517, June 2012
Google Scholar
Azad, P., Asfour, T., Dillmann, R.: Combining harris interest points and the SIFT descriptor for fast scale-invariant object recognition. In: IEEE/RSJ International Conference on Intelligent Robots and Systems 2009. IROS 2009, pp. 4275–4280, October 2009
Google Scholar
Bai, L., Hancock, E.R.: Fast depth-based subgraph kernels for unattributed graphs. Pattern Recogn. 50, 233–245 (2016). https://doi.org/10.1016/j.patcog.2015.08.006
CrossRef
Google Scholar
Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008). Similarity Matching in Computer Vision and Multimedia
CrossRef
Google Scholar
Caetano, T.S., McAuley, J.J., Cheng, L., Le, Q.V., Smola, A.J.: Learning graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 31(6), 1048–1058 (2009). https://doi.org/10.1109/Ftpami.2009.28
Cantoni, V., Cinque, L., Guerra, C., Levialdi, S., Lombardi, L.: 2-D object recognition by multiscale tree matching. Pattern Recognit. 31(10), 1443–1454 (1998)
CrossRef
Google Scholar
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2005, CVPR 2005, vol. 1, pp. 886–893, June 2005
Google Scholar
Dean, T., Ruzon, M., Segal, M., Shlens, J., Vijayanarasimhan, S., Yagnik, J.: Fast, accurate detection of 100,000 object classes on a single machine. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Washington, DC, USA (2013)
Google Scholar
Demirci, M.F., Shokoufandeh, A., Keselman, Y., Bretzner, L., Dickinson, S.: Object recognition as many-to-many feature matching. Int. J. Comput. Vis. 69(2), 203–222 (2006). https://doi.org/10.1007/Fs11263-006-6993-y
Duchenne, O., Bach, F., Kweon, I.S., Ponce, J.: A tensor-based algorithm for high-order graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2383–2395 (2011). https://doi.org/10.1109/Ftpami.2011.110
Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2010)
CrossRef
Google Scholar
Geusebroek, J.M., Burghouts, G.J., Smeulders, A.W.: The amsterdam library of object images, January 2005. https://doi.org/10.1023/B:VISI.0000042993.50813.60
CrossRef
Google Scholar
Han, X., Leung, T., Jia, Y., Sukthankar, R., Berg, A.C.: Matchnet: unifying feature and metric learning for patch-based matching. In: CVPR (2015)
Google Scholar
Kurzejamski, G., Zawistowski, J., Sarwas, G.: A framework for robust object multi-detection with a vote aggregation and a cascade filtering. CoRR abs/1512.08648 (2015). http://arxiv.org/abs/1512.08648
Kurzejamski, G., Zawistowski, J., Sarwas, G.: Robust method of vote aggregation and proposition verification for invariant local features. In: VISAPP 2015 - Proceedings of the International Conference on Computer Vision Theory and Applications, pp. 593–600, March 2015
Google Scholar
Lee, J., Cho, M., Lee, K.M.: Hyper-graph matching via reweighted random walks. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1633–1640. IEEE, June 2011. https://doi.org/10.1109/Fcvpr.2011.5995387
Leutenegger, S., Chli, M., Siegwart, R.: BRISK: binary robust invariant scalable keypoints. In: IEEE International Conference on Computer Vision (ICCV) 2011, pp. 2548–2555, November 2011
Google Scholar
Loquercio, A., Dymczyk, M., Zeisl, B., Lynen, S., Gilitschenski, I., Siegwart, R.: Efficient descriptor learning for large scale localization. In: ICRA (2017)
Google Scholar
Lowe, D.: Distinctive Image Features From Scale-invariant Keypoints, vol. 60, pp. 91–110. Kluwer Academic Publishers, Hingham (2004)
MathSciNet
CrossRef
Google Scholar
Lowe, D.: Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision 1999, vol. 2, pp. 1150–1157 (1999)
Google Scholar
Lv, X., Wang, Z.J.: Perceptual image hashing based on shape contexts and local feature points. IEEE Trans. Inf. Forensics Secur. 7(3), 1081–1093 (2012). https://doi.org/10.1109/Ftifs.2012.2190594
Myeong, H., Chang, J.Y., Lee, K.M.: Learning object relationships via graph-based context model. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2727–2734. IEEE, June 2012. https://doi.org/10.1109/Fcvpr.2012.6247995
Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: An efficient alternative to SIFT or SURF. In: IEEE International Conference on Computer Vision (ICCV) 2011, pp. 2564–2571, November 2011
Google Scholar
Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-lehman graph kernels. J. Mach. Learn. Res. 12, 2539–2561 (2011). http://dl.acm.org/citation.cfm?id=1953048.2078187
Simo-Serra, E., Trulls, E., Ferraz, L., Kokkinos, I., Fua, P., Moreno-Noguer, F.: Discriminative learning of deep convolutional feature point descriptors. In: ICCV (2015)
Google Scholar
Tian, Y., Patel, J.M.: Tale: a tool for approximate large graph matching. In: 2008 IEEE 24th International Conference on Data Engineering (ICDE 2008), pp. 963–972. IEEE, April 2008. https://doi.org/10.1109/Ficde.2008.4497505
Torresani, L., Kolmogorov, V., Rother, C.: Feature correspondence via graph matching: models and global optimization. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5303, pp. 596–609. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88688-4_44
CrossRef
Google Scholar
Vento, M.: A long trip in the charming world of graphs for pattern recognition. Pattern Recogn. 48(2), 291–301, February 2015. https://doi.org/10.1016/Fj.patcog.2014.01.002
Yi, K.M., Trulls, E., Lepetit, V., Fua, P.: Lift: Learned invariant feature transform. In: ECCV (2016)
Google Scholar
Zass, R., Shashua, A.: Probabilistic graph and hypergraph matching. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8. IEEE, June 2008. https://doi.org/10.1109/Fcvpr.2008.4587500
Zickler, S., Efros, A.: Detection of multiple deformable objects using PCA-SIFT. In: Proceedings of the 22nd National Conference on Artificial Intelligence, AAAI 2007, vol. 2, pp. 1127–1132. AAAI Press (2007)
Google Scholar