Skip to main content

Combining Truth Discovery and RDF Knowledge Bases to Their Mutual Advantage

Part of the Lecture Notes in Computer Science book series (LNISA,volume 11136)

Abstract

This study exploits knowledge expressed in RDF Knowledge Bases (KBs) to enhance Truth Discovery (TD) performances. TD aims to identify facts (true claims) when conflicting claims are made by several sources. Based on the assumption that true claims are provided by reliable sources and reliable sources provide true claims, TD models iteratively compute value confidence and source trustworthiness in order to determine which claims are true. We propose a model that exploits the knowledge extracted from an existing RDF KB in the form of rules. These rules are used to quantify the evidence given by the RDF KB to support a claim. This evidence is then integrated into the computation of the confidence value to improve its estimation. Enhancing TD models efficiently obtains a larger set of reliable facts that vice versa can populate RDF KBs. Empirical experiments on real-world datasets showed the potential of the proposed approach, which led to an improvement of up to 18% compared to the model we modified.

Keywords

  • Truth discovery
  • RDF KBs
  • Rule mining
  • Source trustworthiness
  • Value confidence

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-00671-6_38
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-00671-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1.

Notes

  1. 1.

    https://github.com/lgi2p/TDwithRULES.

  2. 2.

    We assumed that abstract concepts should have higher out-degree than less abstract ones. Thus, for each cycle, the edge whose target is the node with the highest out-degree was removed. Analysing the discarded edges, the heuristic works.

  3. 3.

    Information Content indicates the degree of abstraction/concreteness of a concept w.r.t. an ontology. It monotonically increases from the most abstract concept (its IC = 0) to the most concrete ones discriminating the granularity of different values.

  4. 4.

    For these models we used the implementation available at http://www.github.com/daqcri/DAFNA-EA.

References

  1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: SIGMOD 1993, vol. 22, pp. 207–216. ACM (1993)

    Google Scholar 

  2. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_52

    CrossRef  Google Scholar 

  3. Beretta, V., Harispe, S., Ranwez, S., Mougenot, I.: How can ontologies give you clue for truth-discovery? An exploratory study. In: WIMS 2016, p. 15. ACM (2016). https://doi.org/10.1145/2912845.2912848

  4. Berti-Équille, L., Borge-Holthoefer, J.: Veracity of Data: From Truth Discovery Computation Algorithms to Models of Misinformation Dynamics. Synthesis Lectures on Data Management. Morgan & Claypool Publishers (2015). https://doi.org/10.2200/S00676ED1V01Y201509DTM042

    CrossRef  Google Scholar 

  5. Dong, X., et al.: Knowledge vault: a web-scale approach to probabilistic knowledge fusion. In: KDD 2014, pp. 601–610. ACM (2014). https://doi.org/10.1145/2623330.2623623

  6. Galárraga, L.: Interactive rule mining in knowledge bases. In: Actes des 31e Conférence sur la Gestion de Données (BDA 2015), Île de Porquerolles (2015)

    Google Scholar 

  7. Galárraga, L., Suchanek, F.M.: Towards a numeric rule mining language. In: Proceedings of Automated Knowledge Base Construction workshop (2014)

    Google Scholar 

  8. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in ontological knowledge bases with AMIE+. VLDB J. 24(6), 707–730 (2015). https://doi.org/10.1007/s00778-015-0394-1

    CrossRef  Google Scholar 

  9. Lehmann, J., Völker, J. (eds.): Perspectives On Ontology Learning, vol. 18. IOS Press (2014). https://doi.org/10.3233/978-1-61499-379-7-i

  10. Li, Y., et al.: A survey on truth discovery. SIGKDD Explor. Newsl. 17(2), 1–16 (2016). https://doi.org/10.1145/2897350.2897352

    MathSciNet  CrossRef  Google Scholar 

  11. Maimon, O., Rokach, L.: Data Mining and Knowledge Discovery Handbook, vol. 2. Springer, Heidelberg (2005). https://doi.org/10.1007/b107408

    CrossRef  MATH  Google Scholar 

  12. Nebot, V., Berlanga, R.: Finding association rules in semantic web data. Knowl.-Based Syst. 25(1), 51–62 (2012)

    CrossRef  Google Scholar 

  13. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine learning for knowledge graphs. Proc. IEEE 104(1), 11–33 (2016)

    CrossRef  Google Scholar 

  14. Pasternack, J., Roth, D.: Knowing what to believe (when you already know something). In: COLING 2010, pp. 877–885. Association for Computational Linguistics, Stroudsburg, PA, USA (2010)

    Google Scholar 

  15. Quboa, Q.K., Saraee, M.: A state-of-the-art survey on semantic web mining. Intell. Inf. Manag. 5(01), 1–10 (2013)

    Google Scholar 

  16. Robbins, H.: An empirical Bayes approach to statistics. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability Volume 1: Contributions to the Theory of Statistics, pp. 157–163. University of California Press, Berkeley, California (1956)

    Google Scholar 

  17. Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge. In: WWW 2007, pp. 697–706. ACM (2007). https://doi.org/10.1145/1242572.1242667

  18. Pellissier Tanon, T., Stepanova, D., Razniewski, S., Mirza, P., Weikum, G.: Completeness-aware rule learning from knowledge graphs. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 507–525. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68288-4_30

    Google Scholar 

  19. Ventura, S., Luna, J.M.: Quality measures in pattern mining. In: Ventura, S., Luna, J.M. (eds.) Pattern Mining with Evolutionary Algorithms, pp. 27–44. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33858-3_2

    CrossRef  MATH  Google Scholar 

  20. Waguih, D.A., Berti-Equille, L.: Truth discovery algorithms: an experimental evaluation. CoRR abs/1409.6428 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Beretta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Beretta, V., Harispe, S., Ranwez, S., Mougenot, I. (2018). Combining Truth Discovery and RDF Knowledge Bases to Their Mutual Advantage. In: , et al. The Semantic Web – ISWC 2018. ISWC 2018. Lecture Notes in Computer Science(), vol 11136. Springer, Cham. https://doi.org/10.1007/978-3-030-00671-6_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00671-6_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00670-9

  • Online ISBN: 978-3-030-00671-6

  • eBook Packages: Computer ScienceComputer Science (R0)